Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nick C. Polfer is active.

Publication


Featured researches published by Nick C. Polfer.


Physical Chemistry Chemical Physics | 2006

IRMPD spectroscopy of metal-ion/tryptophan complexes

Nick C. Polfer; Jos Oomens; Robert C. Dunbar

Infrared multiple-photon dissociation (IRMPD) spectroscopy is employed to obtain detailed binding information on singly charged silver and alkali metal-ion/tryptophan complexes in the gas phase. For these complexes the presence of the salt bridge (i.e. zwitterionic) tautomer can be virtually excluded, except for perhaps a few percent in the case of Li+. Two low-energy structures having the charge solvation form are shown to be likely, where the metal cation is either in a tridentate N/O/Ring conformation or in a bidentate O/Ring conformation. These two structures can be conveniently discriminated and their relative quantities can be approximated by IR spectroscopy, based principally on diagnostic modes near approximately 1150 (N/O/Ring) and 1400 (O/Ring) cm(-1). Interestingly, the smaller cation complexes (i.e. Ag+ and Li+) display exclusively the N/O/Ring conformation, whereas the O/Ring conformer becomes progressively more abundant with increasing alkali metal size, eventually representing the majority of the ion population for Rb+ and Cs+. These spectroscopic findings are in excellent agreement with thermochemical density functional theory (DFT) calculations, giving support to the utility of high-level quantum-chemical calculations for such systems. Moreover, in contrast to other mass spectrometry-based techniques, IRMPD spectroscopy allows clear differentiation and semi-quantitative approximation of these metal-ligand binding motifs, thereby underlining its importance in thermochemical model benchmarking.


Journal of Physical Chemistry A | 2008

On the dynamics of fragment isomerization in collision-induced dissociation of peptides.

Nick C. Polfer; Brian C. Bohrer; Manolo D. Plasencia; Béla Paizs; David E. Clemmer

The structures of peptide collision-induced dissociation (CID) product ions are investigated using ion mobility/mass spectrometry techniques combined with theoretical methods. The cross-section results are consistent with a mixture of linear and cyclic structures for both b4 and a4 fragment ions. Direct evidence for cyclic structures is essential in rationalizing the appearance of fragments with scrambled (i.e., permutated) primary structures, as the cycle may not open up where it was initially formed. It is demonstrated here that cyclic and linear a4 structures can interconvert freely as a result of collisional activation, implying that isomerization takes place prior to dissociation.


ChemPhysChem | 2008

Alkali Metal Complexes of the Dipeptides PheAla and AlaPhe: IRMPD Spectroscopy†

Nick C. Polfer; Jos Oomens; Robert C. Dunbar

Complexes of PheAla and AlaPhe with alkali metal ions Na(+) and K(+) are generated by electrospray ionization, isolated in the Fourier-transform ion cyclotron resonance (FT-ICR) ion trapping mass spectrometer, and investigated by infrared multiple-photon dissociation (IRMPD) using light from the FELIX free electron laser over the mid-infrared range from 500 to 1900 cm(-1). Insight into structural features of the complexes is gained by comparing the obtained spectra with predicted spectra and relative free energies obtained from DFT calculations for candidate conformers. Combining spectroscopic and energetic results establishes that the metal ion is always chelated by the amide carbonyl oxygen, whilst the C-terminal hydroxyl does not complex the metal ion and is in the endo conformation. It is also likely that the aromatic ring of Phe always chelates the metal ion in a cation-pi binding configuration. Along with the amide CO and ring chelation sites, a third Lewis-basic group almost certainly chelates the metal ion, giving a threefold chelation geometry. This third site may be either the C-terminal carbonyl oxygen, or the N-terminal amino nitrogen. From the spectroscopic and computational evidence, a slight preference is given to the carbonyl group, in an RO(a)O(t) chelation pattern, but coordination by the amino group is almost equally likely (particularly for K(+)PheAla) in an RO(a)N(t) chelation pattern, and either of these conformations, or a mixture of them, would be consistent with the present evidence. (R represents the pi ring site, O(a) the amide oxygen, O(t) the terminal carbonyl oxygen, and N(t) the terminal nitrogen.) The spectroscopic findings are in better agreement with the MPW1PW91 DFT functional calculations of the thermochemistry compared with the B3LYP functional, which seems to underestimate the importance of the cation-pi interaction.


Analytical Chemistry | 2010

Negative electron transfer dissociation of deprotonated phosphopeptide anions: choice of radical cation reagent and competition between electron and proton transfer.

Malwina Huzarska; Israel Ugalde; Desmond Allen Kaplan; Ralf Hartmer; Michael L. Easterling; Nick C. Polfer

Despite significant developments in mass spectrometry technology in recent years, no routine proteomics sequencing tool is currently available for peptide anions. The use of a molecular open-shell cation is presented here as a possible reaction partner to induce electron transfer dissociation with deprotonated peptide anions. In this negative electron transfer dissociation (NETD) scheme, an electron is abstracted from the peptide anion and transferred to the radical cation. This is demonstrated for the example of the fluoranthene cation, C(16)H(10)(+*), which is reacted with deprotonated phosphorylated peptides in a 3-D ion trap mass spectrometer. Selective backbone cleavage at the C(alpha)-C bond is observed to yield a and x fragments, similarly to electron detachment dissociation (EDD) of peptide anions. Crucially, the phosphorylation site is left intact in the dissociation process, allowing an identification and localization of the post-translational modification (PTM) site. In contrast, NETD using Xe(+*) as the reagent cation results in sequential neutral losses (CO(2) and H(3)PO(4)) from a/x fragments, which complicate the interpretation of the mass spectra. This difference in dissociation behavior can be understood in the framework of the reduced recombination energy of the electron transfer process for fluoranthene, which is estimated at 2.5-4.5 eV, compared to 6.7-8.7 eV for xenon. Similarly to ETD, proton transfer is found to compete with electron transfer processes in NETD. Isotope fitting of the charge-reduced species shows that in the case of fluoranthene-mediated NETD, proton transfer only accounts for <20%, whereas this process highly abundant for Xe(+*) (43 and 82%). Since proton abstraction from Xe(+*) is not possible, this suggests that Xe(+*) ionizes other transient species in the ion trap, which then engage in proton transfer reactions with the peptide anions.


Journal of Physical Chemistry B | 2009

Peptide length, steric effects, and ion solvation govern zwitterion stabilization in barium-chelated di- and tripeptides

Robert C. Dunbar; Jeffrey D. Steill; Nick C. Polfer; Jos Oomens

Infrared multiple-photon dissociation (IRMPD) spectroscopy has given infrared spectra of complexes of di- and tripeptides (AlaAla, AlaAlaAla, AlaPhe, PheAla) with singly and doubly charged metal ions (K(+), Ca(2+), Sr(2+), and Ba(2+)). The switch between charge-solvated (CS) and salt-bridged zwitterion (SB) conformations is displayed through highly diagnostic features in the mid-infrared. Systematic trends are found correlating with the length of the peptide chain (tripeptides favoring CS conformations), metal ion size (larger metals favoring SB conformations), metal ion charge (doubly charged ions favoring SB conformations), and sterically available Lewis-basic side-chain interactions with the metal ion (for example a cation-pi interaction with Ba(2+) stabilizes CS for PheAla but not for AlaPhe). The principle is that CS conformations are favored for small metal ions with high charge density and extensive microsolvation of the charge by Lewis-basic groups, especially amide carbonyls; SB conformations are favored by metal ions of high charge but low charge density, which are better stabilized by salt-bridge Coulomb interactions.


Journal of Physical Chemistry A | 2009

Dimeric complexes of tryptophan with M2+ metal ions.

Robert C. Dunbar; Jeffrey D. Steill; Nick C. Polfer; Jos Oomens

IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and transition metals Zn, Cd, Mn, Co, and Ni. With the support of DFT thermochemical calculations, at least three different structural motifs were distinguished spectroscopically, depending critically on the nature of the metal ion. The spectral signatures of a ligand in the charge-solvated (CS) configuration, namely peaks near 1730 and 1150 cm(-1), were prominent in all the spectra, and it was clear that all the dimer complexes contain at least one CS ligand. The spectra indicated that the second ligand is zwitterionic (ZW) for all complexes except the Ni case, with the second ligand having an extended binding geometry with smaller metals but showing some admixture of a compact chelated geometry with larger alkaline earths. It was concluded that these dimer complexes have a mixed configuration of ligands, denoted CS/ZW. The Ni(2+)Trp(2) complex is exceptional, with the spectroscopy and the thermochemical calculation both indicating a CS/CS configuration of ligands. This geometry appears to correlate with the exceptionally small size and high binding strength of the Ni(2+) cation. The complex CdClTrp(1+) was also obtained and gave a clear spectrum showing a CS ligand configuration. The presence of a CS ligand in all the dimeric complexes of the 2+ metals is an interesting contrast with the monomer complex Ba(2+)Trp, in which the ligand is ZW.


Journal of Physical Chemistry A | 2008

Infrared spectroscopy of discrete uranyl anion complexes

Gary S. Groenewold; Anita K. Gianotto; Michael E. McIlwain; Michael J. Van Stipdonk; Michael J. Kullman; David T. Moore; Nick C. Polfer; Jos Oomens; Ivan Infante; Lucas Visscher; Bertrand Siboulet; Wibe A. de Jong

The Free-Electron Laser for Infrared Experiments (FELIX) was used to study the wavelength-resolved multiple photon photodissociation of discrete, gas-phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands and are comparable to solution-phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm(-1) higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity.


Journal of Physical Chemistry A | 2010

Glycine and its hydrated complexes: a matrix isolation infrared study.

Clifton Espinoza; Jan Szczepanski; Martin Vala; Nick C. Polfer

The hydration of glycine is investigated by comparing the structures of bare glycine to its hydrated complexes, glycine.H(2)O and glycine.(H(2)O)(2). The Fourier transform infrared spectra of glycine and glycine.water complexes, embedded in Ar matrices at 12 K, have been recorded and the results were compared to density functional theory (DFT) calculations. An initial comparison of the experimental spectra was made to the harmonic infrared spectra of putative structures calculated at the MPW1PW91/6-311++G(d,p) level of theory. The results suggest that bare glycine adopts a C(s) symmetry structure (G-1), where the hydrogens of the amino NH(2) hydrogen-bond intramolecularly with the carboxylic acid C horizontal lineO oxygen. Also observed as minor constituents are the next two lowest-energy structures, one in which the carboxylic acid (O-)H group hydrogen-bonds to the amino NH(2) group (G-2), and the other where intramolecular hydrogen bonding occurs between the NH(2) and the carboxylic acid O(-H) groups (G-3). The abundances of these structures are estimated at 84%, 9% and 8%, respectively. The least favored structure, G-3, can be eliminated by annealing the matrix to 35 K. Addition of the first water molecule to G-1 takes place at the carboxylic acid group, with simultaneous hydrogen bonding of the water molecule to the carboxylic acid (C=)O and (O-)H. The results are consistent with the predominance of this structure, although there is evidence for a small amount of a hydrated G-2 structure. Addition of the second water molecule is less definitive, as only a small number of intense infrared modes can be unambiguously assigned to glycine.(H(2)O)(2). Anharmonic frequency calculations based on second-order vibrational perturbation theory have also been carried out. It is shown that such calculations can generate improved estimates (i.e., approximately 2%) of the experimental frequencies for glycine and glycine.H(2)O, provided that the potential energy surfaces are modeled with high-level ab initio approaches (MP2/aug-cc-pVDZ).


Journal of the American Society for Mass Spectrometry | 2010

Oxazolone versus macrocycle structures for leu-enkephalin b2–b4: Insights from infrared multiple-photon dissociation spectroscopy and gas-phase hydrogen/deuterium exchange

Xian Chen; Jeffrey D. Steill; Jos Oomens; Nick C. Polfer

The collision-induced dissociation (CID) products b2-b4 from Leu-enkephalin are examined with infrared multiple-photon dissociation (IR-MPD) spectroscopy and gas-phase hydrogen/deuterium exchange (HDX). Infrared spectroscopy reveals that b2 exclusively adopts oxazolone structures, protonated at the N-terminus and at the oxazolone ring N, based on the presence and absence of diagnostic infrared vibrations. This is correlated with the presence of a single HDX rate. For the larger b3 and b4, the IR-MPD measurements display diagnostic bands compatible with a mixture of oxazolone and macrocycle structures. This result is supported by HDX experiments, which show a bimodal distribution in the HDX spectra and two distinct rates in the HDX kinetic fitting. The kinetic fitting of the HDX data is employed to derive the relative abundances of macrocycle and oxazolone structures for b3 and b4, using a procedure recently implemented by our group for a series of oligoglycine b fragments (Chen et al. J. Am. Chem. Soc.2009, 131(51), 18272–18282. doi: 10.1021/ja9030837). In analogy to that study, the results suggest that the relative abundance of the macrocycle structure increases as a function of b fragment size, going from 0% for b2 to ∼6% for b3, and culminating in 31% for b4. Nonetheless, there are also surprising differences between both studies, both in the exchange kinetics and the propensity in forming macrocycle structures. This indicates that the chemistry of “head-to-tail” cyclization depends on subtle differences in the sequence as well as the size of the b fragment.


Journal of Proteome Research | 2011

On the relevance of peptide sequence permutations in shotgun proteomics studies.

Long Yu; Yanglan Tan; Yihsuan Tsai; David R. Goodlett; Nick C. Polfer

In collision-induced dissociation (CID) of peptides, it has been observed that rearrangement processes can take place that appear to permute/scramble the original primary structure, which may in principle adversely affect peptide identification. Here, an analysis of sequence permutation in tandem mass spectra is presented for a previously published proteomics study on P. aeruginosa (Scherl et al., J. Am. Soc. Mass Spectrom.2008, 19, 891) conducted using an LTQ-orbitrap. Overall, 4878 precursor ions are matched by considering the accurate mass (i.e., <5 ppm) of the precursor ion and at least one fragment ion that confirms the sequence. The peptides are then grouped into higher- and lower-confidence data sets, using five fragment ions as a cutoff for higher-confidence identification. It is shown that the propensity for sequence permutation increases with the length of the tryptic peptide in both data sets. A higher charge state (i.e., 3+ vs 2+) also appears to correlate with a higher appearance of permuted masses for larger peptides. The ratio of these permuted sequence ions, compared to all tandem mass spectral peaks, reaches ∼25% in the higher-confidence data set, compared to an estimated incidence of false positives for permuted masses (maximum ∼8%), based on a null-hypothesis decoy data set.

Collaboration


Dive into the Nick C. Polfer's collaboration.

Top Co-Authors

Avatar

Jos Oomens

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Robert C. Dunbar

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Steill

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

David T. Moore

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gerard Meijer

Fritz Haber Institute of the Max Planck Society

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Béla Paizs

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge