Nick Goeden
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nick Goeden.
Nature | 2011
Alexandre Bonnin; Nick Goeden; Kevin Chen; Melissa L. Wilson; Jennifer King; Jean C. Shih; Randy D. Blakely; Evan S. Deneris; Pat Levitt
Serotonin (5-hydroxytryptamine or 5-HT) is thought to regulate neurodevelopmental processes through maternal–fetal interactions that have long-term mental health implications. It is thought that beyond fetal 5-HT neurons there are significant maternal contributions to fetal 5-HT during pregnancy but this has not been tested empirically. To examine putative central and peripheral sources of embryonic brain 5-HT, we used Pet1−/− (also called Fev) mice in which most dorsal raphe neurons lack 5-HT. We detected previously unknown differences in accumulation of 5-HT between the forebrain and hindbrain during early and late fetal stages, through an exogenous source of 5-HT which is not of maternal origin. Using additional genetic strategies, a new technology for studying placental biology ex vivo and direct manipulation of placental neosynthesis, we investigated the nature of this exogenous source. We uncovered a placental 5-HT synthetic pathway from a maternal tryptophan precursor in both mice and humans. This study reveals a new, direct role for placental metabolic pathways in modulating fetal brain development and indicates that maternal–placental–fetal interactions could underlie the pronounced impact of 5-HT on long-lasting mental health outcomes.
Cell | 2013
Franck Oury; Lori Khrimian; Christine A. Denny; Antoine Gardin; Alexandre Chamouni; Nick Goeden; Yung-yu Huang; Hojoon Lee; Prashanth Srinivas; Xiao-Bing Gao; Shigetomo Suyama; Thomas Langer; J. John Mann; Tamas L. Horvath; Alexandre Bonnin; Gerard Karsenty
The powerful regulation of bone mass exerted by the brain suggests the existence of bone-derived signals modulating this regulation or other functions of the brain. We show here that the osteoblast-derived hormone osteocalcin crosses the blood-brain barrier, binds to neurons of the brainstem, midbrain, and hippocampus, enhances the synthesis of monoamine neurotransmitters, inhibits GABA synthesis, prevents anxiety and depression, and favors learning and memory independently of its metabolic functions. In addition to these postnatal functions, maternal osteocalcin crosses the placenta during pregnancy and prevents neuronal apoptosis before embryos synthesize this hormone. As a result, the severity of the neuroanatomical defects and learning and memory deficits of Osteocalcin(-/-) mice is determined by the maternal genotype, and delivering osteocalcin to pregnant Osteocalcin(-/-) mothers rescues these abnormalities in their Osteocalcin(-/-) progeny. This study reveals that the skeleton via osteocalcin influences cognition and contributes to the maternal influence on fetal brain development.
Frontiers in Cellular Neuroscience | 2013
Juan Velasquez; Nick Goeden; Alexandre Bonnin
In addition to its role in the pathophysiology of numerous psychiatric disorders, increasing evidence points to serotonin (5-HT) as a crucial molecule for the modulation of neurodevelopmental processes. Recent evidence indicates that the placenta is involved in the synthesis of 5-HT from maternally derived tryptophan (TRP). This gives rise to the possibility that genetic and environmental perturbations directly affecting placental TRP metabolism may lead to abnormal brain circuit wiring in the developing embryo, and therefore contribute to the developmental origin of psychiatric disorders. In this review, we discuss how perturbations of the placental TRP metabolic pathway may lead to abnormal brain development and function throughout life. Of particular interest is prenatal exposure to maternal depression and antidepressants, both known to alter fetal development. We review existing evidence on how antidepressants can alter placental physiology in its key function of maintaining fetal homeostasis and have long-term effects on fetal forebrain development.
The Journal of Neuroscience | 2016
Nick Goeden; Juan Velasquez; Kathryn A. Arnold; Yen Chan; Brett T. Lund; George M. Anderson; Alexandre Bonnin
Maternal inflammation during pregnancy affects placental function and is associated with increased risk of neurodevelopmental disorders in the offspring. The molecular mechanisms linking placental dysfunction to abnormal fetal neurodevelopment remain unclear. During typical development, serotonin (5-HT) synthesized in the placenta from maternal l-tryptophan (TRP) reaches the fetal brain. There, 5-HT modulates critical neurodevelopmental processes. We investigated the effects of maternal inflammation triggered in midpregnancy in mice by the immunostimulant polyriboinosinic-polyribocytidylic acid [poly(I:C)] on TRP metabolism in the placenta and its impact on fetal neurodevelopment. We show that a moderate maternal immune challenge upregulates placental TRP conversion rapidly to 5-HT through successively transient increases in substrate availability and TRP hydroxylase (TPH) enzymatic activity, leading to accumulation of exogenous 5-HT and blunting of endogenous 5-HT axonal outgrowth specifically within the fetal forebrain. The pharmacological inhibition of TPH activity blocked these effects. These results establish altered placental TRP conversion to 5-HT as a new mechanism by which maternal inflammation disrupts 5-HT-dependent neurogenic processes during fetal neurodevelopment. SIGNIFICANCE STATEMENT The mechanisms linking maternal inflammation during pregnancy with increased risk of neurodevelopmental disorders in the offspring are poorly understood. In this study, we show that maternal inflammation in midpregnancy results in an upregulation of tryptophan conversion to serotonin (5-HT) within the placenta. Remarkably, this leads to exposure of the fetal forebrain to increased concentrations of this biogenic amine and to specific alterations of crucially important 5-HT-dependent neurogenic processes. More specifically, we found altered serotonergic axon growth resulting from increased 5-HT in the fetal forebrain. The data provide a new understanding of placental function playing a key role in fetal brain development and how this process is altered by adverse prenatal events such as maternal inflammation. The results uncover important future directions for understanding the early developmental origins of mental disorders.
Nature Protocols | 2013
Nick Goeden; Alexandre Bonnin
Ex vivo perfusion systems offer a reliable, reproducible method for studying acute physiological responses of an organ to various environmental manipulations. Unlike in vitro culture systems, the cellular organization, compartmentalization and three-dimensional structure of ex vivo–perfused organs are maintained. These particular parameters are crucial for the normal physiological function of the placenta, which supports fetal growth through transplacental exchange, nutritional synthesis and metabolism, growth factor promotion and regulation of both maternally and fetally derived molecules. The perfusion system described here, which can be completed in 4–5 h, allows for integrated, physiological studies of de novo synthesis and metabolism and transport of materials across the live mouse placenta, not only throughout a normal gestation period but also following a variety of individual or combined genetic and environmental perturbations compromising placental function.
Neuropsychopharmacology | 2017
Christopher L. Muller; Allison M.J. Anacker; Tiffany D. Rogers; Nick Goeden; Elizabeth H Keller; C. Gunnar Forsberg; Travis M. Kerr; Carly La Wender; George M. Anderson; Gregg D. Stanwood; Randy D. Blakely; Alexandre Bonnin; Jeremy Veenstra-VanderWeele
Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment.
Translational Developmental Psychiatry | 2013
Nick Goeden; Juan Velasquez; Alexandre Bonnin
Dysfunction of brain serotonin (5-HT) signaling contributes to the pathophysiology of several psychiatric disorders. However, before 5-HT acts as a neurotransmitter/neuromodulator in the adult brain, increasing evidence suggests that it plays crucial roles in the modulation of essential neurodevelopmental processes. It was recently demonstrated that the placenta synthesizes 5-HT from maternally derived tryptophan during pregnancy. Therefore, genetic and environmental perturbations that affect placental tryptophan metabolism could alter neurodevelopmental processes in the developing embryo, and contribute to the developmental origin of psychiatric disorders. Here we discuss how disruptions of the placental tryptophan metabolic pathway may lead to abnormal brain development and function in adult life.
ACS Chemical Neuroscience | 2016
Juan Velasquez; Nick Goeden; Skyla M. Herod; Alexandre Bonnin
While selective-serotonin reuptake inhibitor (SSRI) antidepressants are commonly prescribed in the treatment of depression, their use during pregnancy leads to fetal drug exposures. According to recent reports, such exposures could affect fetal development and long-term offspring health. A central question is how pregnancy-induced physical and physiological changes in mothers, fetuses, and the placenta influence fetal SSRI exposures during gestation. In this study, we examined the effects of gestational stage on the maternal pharmacokinetics and fetal disposition of the SSRI (±)-citalopram (CIT) in a mouse model. We determined the maternal and fetal CIT serum concentration-time profiles following acute maternal administration on gestational days (GD)14 and GD18, as well as the fetal brain drug disposition. The results show that pregnancy affects the pharmacokinetics of CIT and that maternal drug clearance increases as gestation progresses. The data further show that CIT and its primary metabolite desmethylcitalopram (DCIT) readily cross the placenta into the fetal compartment, and fetal exposure to CIT exceeds that of the mother during gestation 2 h after maternal administration. Enzymatic activity assays revealed that fetal drug metabolic capacity develops in late gestation, resulting in elevated circulating and brain concentrations of DCIT at embryonic day (E)18. Fetal exposure to the SSRI CIT in murine pregnancy is therefore influenced by both maternal gestational stage and embryonic development, suggesting potential time-dependent effects on fetal brain development.
The Guide to Investigation of Mouse Pregnancy | 2014
Nick Goeden; Alexandre Bonnin
Chapter Summary The procedure described in this chapter provides the framework for directly studying transplacental passive/active molecular transport or metabolism, and the downstream consequences this might have for the developing fetus. By design, ex vivo and in vitro experiments are performed in an inherently dissimilar environment to those found in vivo. Accordingly, individual environmental and genetic aspects can be manipulated at will, affording researchers greater experimental control. Ultimately, the results obtained from ex vivo conditions can provide novel hypotheses that are testable in vivo. In comparison to the incredibly plastic nature of gestational conditions, both in terms of fetal development as well as maternal circulatory and metabolic changes, an ex vivo placental perfusion setup provides defined conditions and good temporal resolution. This procedure provides a low-cost, high-throughput assay for transplacental transfer of various pharmacological substances throughout gestation, as well as the framework for basic research on placental metabolism and the downstream effects on fetal development.
Developmental Neuroscience | 2017
Nick Goeden; Francesca M. Notarangelo; Ana Pocivavsek; Sarah Beggiato; Alexandre Bonnin; Robert Schwarcz
The kynurenine pathway (KP), the major catabolic route of tryptophan in mammals, contains several neuroactive metabolites, including kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK). KP metabolism, and especially the fate of KYNA, during pregnancy is poorly understood, yet it may play a significant role in the development of psychiatric disorders later in life. The present study was designed to investigate the prenatal features of KP metabolism in vivo, with special focus on KYNA. To this end, pregnant CD-1 mice were treated systemically with kynurenine (100 mg/kg), KYNA (10 mg/kg), or saline on embryonic day 18. As expected, administration of either kynurenine or KYNA increased KYNA levels in the maternal plasma and placenta. Maternal kynurenine treatment also raised kynurenine levels in the fetal plasma and brain, demonstrating the ability of this pivotal KP metabolite to cross the placenta and increase the levels of both KYNA and 3-HK in the fetal brain. In contrast, maternal administration of KYNA caused only a small, nonsignificant elevation in KYNA levels in fetal plasma and brain. Complementary experiments using an ex vivo placental perfusion procedure confirmed the significant transplacental transfer of kynurenine and demonstrated that only a very small fraction of maternal kynurenine is converted to KYNA in the placenta and released into the fetal compartment under physiological conditions. Jointly, these results help to clarify the contributions of the maternal circulation and the placenta to fetal KYNA in the late prenatal period.