Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nick J. Willett is active.

Publication


Featured researches published by Nick J. Willett.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mechanical regulation of vascular growth and tissue regeneration in vivo

Joel D. Boerckel; Brent A. Uhrig; Nick J. Willett; Nathaniel Huebsch; Robert E. Guldberg

New vascular network formation is a critical step in the wound healing process and a primary limiting factor in functional tissue regeneration. Like many tissues, neovascular networks have been shown in vitro to be highly sensitive to mechanical conditions; however, the effects of matrix deformations on neovascular network formation and remodeling in engineered tissue regeneration in vivo have not been evaluated. We quantified the effects of early and delayed functional loading on neovascular growth in a rat model of large bone defect regeneration using compliant fixation plates that were unlocked to allow transfer of ambulatory loads to the defect either at the time of implantation (early), or after 4 wk of stiff fixation (delayed). Neovascular growth and bone regeneration were quantitatively evaluated 3 wk after the onset of loading by contrast-enhanced microcomputed tomography and histology. The initial vascular response to bone injury featured robust angiogenesis and collateral vessel formation, increasing parameters such as vascular volume and connectivity while decreasing degree of anisotropy. Application of early mechanical loading significantly inhibited vascular invasion into the defect by 66% and reduced bone formation by 75% in comparison to stiff plate controls. In contrast, delaying the onset of loading by 4 wk significantly enhanced bone formation by 20% and stimulated vascular remodeling by increasing the number of large vessels and decreasing the number of small vessels. Together, these data demonstrate the mechanosensitivity of neovascular networks and highlight the capacity of biomechanical stimulation to modulate postnatal vascular growth and remodeling.


Annals of Biomedical Engineering | 2014

Vascularization Strategies for Bone Regeneration

Laxminarayanan Krishnan; Nick J. Willett; Robert E. Guldberg

The functional regeneration of thick vascularized tissues such as bone and muscle is complicated by the large volume of lost tissue, challenging biomechanical environment, and the need to reproduce the highly organized structure of both the native tissue extracellular matrix and its vascular support system. Stem cell or progenitor cell delivery approaches, for example, continue to be plagued by low viability and engraftment in part due to the initial absence of a vascular supply. Recognition of diffusion limitations in thick tissues has prompted regenerative strategies that seek to accelerate establishment of a functional vasculature. The successful design of robust regeneration strategies for these challenging clinical scenarios will rely on a thorough understanding of interactions between construct design parameters and host biological and biomechanical factors. Here, we discuss the critical role of vascularization in normal bone tissue homeostasis and repair, vascular network adaptation to the local biomechanical environment, and the future directions of revascularization approaches being developed and integrated with bone regeneration strategies.


Arthritis Research & Therapy | 2014

Intra-articular injection of micronized dehydrated human amnion/chorion membrane attenuates osteoarthritis development

Nick J. Willett; Tanushree Thote; Angela Sp Lin; Shamus Moran; Yazdan Raji; Sanjay Sridaran; Hazel Y. Stevens; Robert E. Guldberg

IntroductionMicronized dehydrated human amnion/chorion membrane (μ-dHACM) is derived from donated human placentae and has anti-inflammatory, low immunogenic and anti-fibrotic properties. The objective of this study was to quantitatively assess the efficacy of μ-dHACM as a disease modifying intervention in a rat model of osteoarthritis (OA). It was hypothesized that intra-articular injection of μ-dHACM would attenuate OA progression.MethodsLewis rats underwent medial meniscal transection (MMT) surgery to induce OA. Twenty four hours post-surgery, μ-dHACM or saline was injected intra-articularly into the rat joint. Naïve rats also received μ-dHACM injections. Microstructural changes in the tibial articular cartilage were assessed using equilibrium partitioning of an ionic contrast agent (EPIC-μCT) at 21 days post-surgery. The joint was also evaluated histologically and synovial fluid was analyzed for inflammatory markers at 3 and 21 days post-surgery.ResultsThere was no measured baseline effect of μ-dHACM on cartilage in naïve animals. Histological staining of treated joints showed presence of μ-dHACM in the synovium along with local hypercellularity at 3 and 21 days post-surgery. In MMT animals, development of cartilage lesions at 21 days was prevented and number of partial erosions was significantly reduced by treatment with μ-dHACM. EPIC-μCT analysis quantitatively showed that μ-dHACM reduced proteoglycan loss in MMT animals.Conclusionsμ-dHACM is rapidly sequestered in the synovial membrane following intra-articular injection and attenuates cartilage degradation in a rat OA model. These data suggest that intra-articular delivery of μ-dHACM may have a therapeutic effect on OA development.


Acta Biomaterialia | 2014

Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects

Lauren B. Priddy; Ovijit Chaudhuri; Hazel Y. Stevens; Laxminarayanan Krishnan; Brent A. Uhrig; Nick J. Willett; Robert E. Guldberg

Autograft treatment of large bone defects and fracture non-unions is complicated by limited tissue availability and donor site morbidity. Polymeric biomaterials such as alginate hydrogels provide an attractive tissue engineering alternative due to their biocompatibility, injectability, and tunable degradation rates. Irradiated RGD-alginate hydrogels have been used to deliver proteins such as bone morphogenetic protein-2 (BMP-2), to promote bone regeneration and restoration of function in a critically sized rat femoral defect model. However, slow degradation of irradiated alginate hydrogels may impede integration and remodeling of the regenerated bone to its native architecture. Oxidation of alginate has been used to promote degradation of alginate matrices. The objective of this study was to evaluate the effects of alginate oxidation on BMP-2 release and bone regeneration. We hypothesized that oxidized-irradiated alginate hydrogels would elicit an accelerated release of BMP-2, but degrade faster in vivo, facilitating the formation of higher quality, more mature bone compared to irradiated alginate. Indeed, oxidation of irradiated alginate did accelerate in vitro BMP-2 release. Notably, the BMP-2 retained within both constructs was bioactive at 26days, as observed by induction of alkaline phosphatase activity and positive Alizarin Red S staining of MC3T3-E1 cells. From the in vivo study, robust bone regeneration was observed in both groups through 12weeks by radiography, micro-computed tomography analyses, and biomechanical testing. Bone mineral density was significantly greater for the oxidized-irradiated alginate group at 8weeks. Histological analyses of bone defects revealed enhanced degradation of oxidized-irradiated alginate and suggested the presence of more mature bone after 12weeks of healing.


American Journal of Physiology-heart and Circulatory Physiology | 2009

In vivo assessment of blood flow patterns in abdominal aorta of mice with MRI: implications for AAA localization.

Smbat Amirbekian; Robert Long; Michelle A. Consolini; Jin Suo; Nick J. Willett; Sam W. Fielden; Don P. Giddens; W. Robert Taylor; John N. Oshinski

Abdominal aortic aneurysms (AAA) localize in the infrarenal aorta in humans, while they are found in the suprarenal aorta in mouse models. It has been shown previously that humans experience a reversal of flow during early diastole in the infrarenal aorta during each cardiac cycle. This flow reversal causes oscillatory wall shear stress (OWSS) to be present in the infrarenal aorta of humans. OWSS has been linked to a variety of proatherogenic and proinflammatory factors. The presence of reverse flow in the mouse aorta is unknown. In this study we investigated blood flow in mice, using phase-contrast magnetic resonance (PCMR) imaging. We measured blood flow in the suprarenal and infrarenal abdominal aorta of 18 wild-type C57BL/6J mice and 15 apolipoprotein E (apoE)-/- mice. Although OWSS was not directly evaluated, results indicate that, unlike humans, there is no reversal of flow in the infrarenal aorta of wild-type or apoE-/- mice. Distensibility of the mouse aortic wall in both the suprarenal and infrarenal segments is higher than reported values for the human aorta. We conclude that normal mice do not experience the reverse flow in the infrarenal aorta that is observed in humans.


Journal of Biomechanics | 2014

Functional analysis of limb recovery following autograft treatment of volumetric muscle loss in the quadriceps femoris

Mon Tzu Alice Li; Nick J. Willett; Brent A. Uhrig; Robert E. Guldberg; Gordon L. Warren

Severe injuries to the extremities often result in muscle trauma and, in some cases, significant volumetric muscle loss (VML). These injuries continue to be challenging to treat, with few available clinical options, a high rate of complications, and often persistent loss of limb function. To facilitate the testing of regenerative strategies for skeletal muscle, we developed a novel quadriceps VML model in the rat, specifically addressing functional recovery of the limb. Our outcome measures included muscle contractility measurements to assess muscle function and gait analysis for evaluation of overall limb function. We also investigated treatment with muscle autografts, whole or minced, to promote regeneration of the defect area. Our defect model resulted in a loss of muscle function, with injured legs generating less than 55% of muscle strength from the contralateral uninjured control legs, even at 4 weeks post-injury. The autograft treatments did not result in significant recovery of muscle function. Measures of static and dynamic gait were significantly decreased in the untreated, empty defect group, indicating a decrease in limb function. Histological sections of the affected muscles showed extensive fibrosis, suggesting that this scarring of the muscle may be in part the cause of the loss of muscle function in this VML model. Taken together, these data are consistent with clinical findings of reduced muscle function in large VML injuries. This new model with quantitative functional outcome measures offers a platform on which to evaluate treatment strategies designed to regenerate muscle tissue volume and restore limb function.


Advanced Healthcare Materials | 2014

Nanoengineered particles for enhanced intra-articular retention and delivery of proteins.

Ankur Singh; Rachit Agarwal; Carlos A. Diaz-Ruiz; Nick J. Willett; Peiyi Wang; L. Andrew Lee; Qian Wang; Robert E. Guldberg; Andrés J. García

Localized intra-articular delivery of anti-inflammatory proteins can reduce inflammation in osteoarthritis but poses a challenge because of raid clearance within few hours of injection. A new class of polymer is developed that forms self-assembled nanoparticles ranging from 300 to 900 nm and demonstrates particle size dependent prolonged retention in intra-articular joint spaces compared to bolus protein over a period of 14 d.


Bone | 2013

Recovery from hind limb ischemia enhances rhBMP-2-mediated segmental bone defect repair in a rat composite injury model

Brent A. Uhrig; Joel D. Boerckel; Nick J. Willett; Mon-Tzu A. Li; Nathaniel Huebsch; Robert E. Guldberg

Although severe extremity trauma is often inclusive of skeletal and vascular damage in combination, segmental bone defect repair with concomitant vascular injury has yet to be experimentally investigated. To this end, we developed a novel rat composite limb injury model by combining a critically-sized segmental bone defect with surgically-induced hind limb ischemia (HLI). Unilateral 8mm femoral defects were created alone (BD) or in combination with HLI (BD + HLI), and all defects were treated with rhBMP-2 via a hybrid biomaterial delivery system. Based on reported clinical and experimental observations on the importance of vascular networks in bone repair, we hypothesized that HLI would impair bone regeneration. Interestingly, the BD+HLI group displayed improved radiographic bridging, and quantitative micro-CT analysis revealed enhanced bone regeneration as early as week 4 (p < 0.01) that was sustained through week 12 (p < 0.001) and confirmed histologically. This effect was observed in two independent studies and at two different doses of rhBMP-2. Micro-CT angiography was used to quantitatively evaluate vascular networks at week 12 in both the thigh and the regenerated bone defect. No differences were found between groups in total blood vessel volume in the thigh, but clear differences in morphology were present as the BD+HLI group possessed a more interconnected network of smaller diameter vessels (p < 0.001). Accordingly, while the overall thigh vessel volume was comparable between groups, the contributions to vessel volume based on vessel diameter differed significantly. Despite this evidence of a robust neovascular response in the thigh of the BD + HLI group, differences were not observed between groups for bone defect blood vessel volume or morphology. In total, our results demonstrate that a transient ischemic insult and the subsequent recovery response to HLI significantly enhanced BMP-2-mediated segmental bone defect repair, providing additional complexity to the relationship between vascular tissue networks and bone healing. Ultimately, a better understanding of the coupling mechanisms may reveal important new strategies for promoting bone healing in challenging clinical scenarios.


Antioxidants & Redox Signaling | 2011

Redox signaling in an in vivo murine model of low magnitude oscillatory wall shear stress.

Nick J. Willett; Kousik Kundu; Sarah F. Knight; Sergey Dikalov; Niren Murthy; W. Robert Taylor

Wall Shear Stress (WSS) has been identified as an important factor in the pathogenesis of atherosclerosis. We utilized a novel murine aortic coarctation model to acutely create a region of low magnitude oscillatory WSS in vivo. We employed this model to test the hypothesis that acute changes in WSS in vivo induce upregulation of inflammatory proteins, mediated by reactive oxygen species (ROS). Superoxide generation and VCAM-1 expression both increased in regions of low magnitude oscillatory WSS. WSS-dependent superoxide formation was attenuated by tempol treatment, but was unchanged in p47 phox knockout (ko) mice. However, in both the p47 phox ko mice and the tempol-treated mice, low magnitude oscillatory WSS produced an increase in VCAM-1 expression comparable to control mice. Additionally, this same VCAM-1 expression was observed in ebselen-treated mice and catalase overexpressing mice. These results suggest that although the redox state is important to the overall pathogenesis of atherosclerosis, the initial WSS-dependent inflammatory response leading to lesion localization is not dependent on ROS.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

An In Vivo Murine Model of Low-Magnitude Oscillatory Wall Shear Stress to Address the Molecular Mechanisms of Mechanotransduction—Brief Report

Nick J. Willett; Robert Long; Kathryn Maiellaro-Rafferty; Roy L. Sutliff; Richard Schafer; John N. Oshinski; Don P. Giddens; Robert E. Guldberg; W. Robert Taylor

Objective—Current understanding of shear-sensitive signaling pathways has primarily been studied in vitro largely because of a lack of adequate in vivo models. Our objective was to develop a simple and well-characterized murine aortic coarctation model to acutely alter the hemodynamic environment in vivo and test the hypothesis that endothelial inflammatory protein expression is acutely upregulated in vivo by low-magnitude oscillatory wall shear stress (WSS). Methods and Results—Our model uses the shape memory response of nitinol clips to reproducibly induce an aortic coarctation and allow subsequent focal control over WSS in the aorta. We modeled the corresponding hemodynamic environment using computational fluid dynamics and showed that the coarctation produces low-magnitude oscillatory WSS distal to the clip. To assess the biological significance of this model, we correlated WSS to inflammatory protein expression and fatty streak formation. Vascular cell adhesion molecule-1 expression and fatty streak formation were both found to increase significantly in regions corresponding to acutely induced low-magnitude oscillatory WSS. Conclusions—We have developed a novel aortic coarctation model that will be a useful tool for analyzing the in vivo molecular mechanisms of mechanotransduction in various murine models.

Collaboration


Dive into the Nick J. Willett's collaboration.

Top Co-Authors

Avatar

Robert E. Guldberg

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brent A. Uhrig

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanushree Thote

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Angela S.P. Lin

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hazel Y. Stevens

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Moran

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge