Nick Lu
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nick Lu.
Blood | 2013
Yun Cao; Ingrid K. Bender; Athanasios K. Konstantinidis; Soon Cheon Shin; Christine M. Jewell; John A. Cidlowski; Robert P. Schleimer; Nick Lu
Although glucocorticoids are a profoundly important class of anti-inflammatory and immunosuppressive agents, their actions in dendritic cells (DCs) are not well understood. We found that dexamethasone, a potent glucocorticoid, selectively induced apoptosis in mature, but not in immature, DCs in healthy mice, in mice with experimental airway inflammation, and in vitro in bone marrow–derived DCs. Distinct glucocorticoid receptor (GR) translational isoforms expressed in immature and mature DCs probably contribute to the DC maturational stage-specific glucocorticoid sensitivity. The GR-D isoforms were the predominant isoforms in immature DCs, whereas the proapoptotic GR-A isoform was the main isoform in mature DCs. Ectopic expression of the GR-A isoform in immature DCs increased glucocorticoid sensitivity and RU486, a selective GR antagonist, inhibited the glucocorticoid sensitivity of mature DCs. Furthermore, the distinct expression pattern of GR isoforms in immature and mature murine DCs was also observed in human monocyte–derived DCs. These studies suggest that glucocorticoids may spare immature DCs and suppress mature DCs and inflammation via differential expression of GR translational isoforms.
Cell Death and Disease | 2013
I Wu; Soon Cheon Shin; Yun Cao; Ingrid K. Bender; N Jafari; G Feng; S Lin; John A. Cidlowski; Robert P. Schleimer; Nick Lu
Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids.
Science Signaling | 2013
Javier Revollo; Robert H. Oakley; Nick Lu; Mahita Kadmiel; Maheer Gandhavadi; John A. Cidlowski
A transcription factor that regulates developmental events also suppresses transcriptional responses to stress in adult organisms. Stress Response Suppressor Stress induces the adrenal gland to release glucocorticoids, which activate nuclear receptors that initiate changes in gene transcription. HES1 encodes a transcription factor that is activated by Notch signaling during developmental events. Revollo et al. found that glucocorticoids suppressed the expression of HES1 in adult mice and that HES1 protein consequently disappeared from the promoters of glucocorticoid-regulated genes. Mice lacking HES1 in the liver developed glucose intolerance, a metabolic abnormality that was corrected by removal of the adrenal gland. However, administration of exogenous glucocorticoids in adrenalectomized animals restored this glucose intolerance in HES1-deficient mice. These results suggest that HES1 prevents transcriptional activation of glucocorticoid-regulated genes under unstressed conditions and that suppression of HES1 is required for transcriptional responses to glucocorticoids. Hairy and enhancer of split-1 (HES1) is a basic helix-loop-helix transcription factor that is a key regulator of development and organogenesis. However, little is known about the role of HES1 after birth. Glucocorticoids, primary stress hormones that are essential for life, regulate numerous homeostatic processes that permit vertebrates to cope with physiological challenges. The molecular actions of glucocorticoids are mediated by glucocorticoid receptor–dependent regulation of nearly 25% of the genome. Here, we established a genome-wide molecular link between HES1 and glucocorticoid receptors that controls the ability of cells and animals to respond to stress. Glucocorticoid signaling rapidly and robustly silenced HES1 expression. This glucocorticoid-dependent repression of HES1 was necessary for the glucocorticoid receptor to regulate many of its target genes. Mice with conditional knockout of HES1 in the liver exhibited an expanded glucocorticoid receptor signaling profile and aberrant metabolic phenotype. Our results indicate that HES1 acts as a master repressor, the silencing of which is required for proper glucocorticoid signaling.
Allergy | 2016
Jesus Banuelos; Soon Cheon Shin; Yun Cao; Bruce S. Bochner; L. Morales-Nebreda; G. R. S. Budinger; L. Zhou; S. Li; J. Xin; Mark W. Lingen; Chen Dong; Robert P. Schleimer; Nick Lu
Glucocorticoid resistance has been associated with Th17‐driven inflammation, the mechanisms of which are not clear. We determined whether human and mouse Th17 cells are resistant to glucocorticoid‐induced apoptosis.
Molecular Endocrinology | 2013
Ingrid K. Bender; Yun Cao; Nick Lu
Translational isoforms of the glucocorticoid receptor α (GR-A, -B, -C1, -C2, -C3, -D1, -D2, and -D3) have distinct tissue distribution patterns and unique gene targets. The GR-C3 isoform-expressing cells are more sensitive to glucocorticoid killing than cells expressing other GRα isoforms and the GR-D isoform-expressing cells are resistant to glucocorticoid killing. Whereas a lack of activation function 1 (AF1) may underlie the reduced activity of the GR-D isoforms, it is not clear how the GR-C3 isoform has heightened activity. Mutation analyses and N-terminal tagging demonstrated that steric hindrance is probably the mechanism for the GR-A, -B, -C1, and -C2 isoforms to have lower activity than the GR-C3 isoform. In addition, truncation scanning analyses revealed that residues 98 to 115 are critical in the hyperactivity of the human GR-C3 isoform. Chimera constructs linking this critical fragment with the GAL4 DNA-binding domain showed that GR residues 98 to 115 do not contain any independent transactivation activity. Mutations at residues Asp101 or Gln106 and Gln107 all reduced the activity of the GR-C3 isoform. In addition, functional studies indicated that Asp101 is crucial for the GR-C3 isoform to recruit coregulators and to mediate glucocorticoid-induced apoptosis. Thus, charged and polar residues are essential components of an N-terminal motif that enhances the activity of AF1 and the GR-C3 isoform. These studies, together with the observations that GR isoforms have cell-specific expression patterns, provide a molecular basis for the tissue-specific functions of GR translational isoforms.
PLOS ONE | 2016
Zarqa Saif; Rebecca M. Dyson; Hannah K. Palliser; Ian M. R Wright; Nick Lu; Vicki L. Clifton
The placental glucocorticoid receptor (GR) is central to glucocorticoid signalling and for mediating steroid effects on pathways associated with fetal growth and lung maturation but the GR has not been examined in the guinea pig placenta even though this animal is regularly used as a model of preterm birth and excess glucocorticoid exposure. Guinea pig dams received subcutaneous injections of either vehicle or betamethasone at 24 and 12 hours prior to preterm or term caesarean-section delivery. At delivery pup and organ weights were recorded. Placentae were dissected, weighed and analysed using Western blot to examine GR isoform expression in nuclear and cytoplasmic extracts. A comparative examination of the guinea pig GR gene identified it is capable of producing seven of the eight translational GR isoforms which include GRα-A, C1, C2, C3, D1, D2, and D3. GRα-B is not produced in the Guinea Pig. Total GR antibody identified 10 specific bands from term (n = 29) and preterm pregnancies (n = 27). Known isoforms included GRγ, GRα A, GRβ, GRP, GRA and GRα D1-3. There were sex and gestational age differences in placental GR isoform expression. Placental GRα A was detected in the cytoplasm of all groups but was significantly increased in the cytoplasm and nucleus of preterm males and females exposed to betamethasone and untreated term males (KW-ANOVA, P = 0.0001, P = 0.001). Cytoplasmic expression of GRβ was increased in female preterm placentae and preterm and term male placentae exposed to betamethasone (P = 0.01). Nuclear expression of GRβ was increased in all placentae exposed to betamethasone (P = 0.0001). GRα D2 and GRα D3 were increased in male preterm placentae when exposed to betamethasone (P = 0.01, P = 0.02). The current data suggests the sex-specific placental response to maternal betamethasone may be dependent on the expression of a combination of GR isoforms.
Placenta | 2017
Vicki L. Clifton; James S. M. Cuffe; Karen M. Moritz; T. J. Cole; Peter J. Fuller; Nick Lu; Sailesh Kumar; Suyinn Chong; Zarqa Saif
The physiological mechanisms that confer different outcomes in morbidity and mortality of the fetus exposed to stressful environments may be driven by significant differences in the expression and function of the placental glucocorticoid receptor (GR). The recent discovery that the placenta contains at least 8 different isoforms of the GR raises questions about the regulation and physiological relevance of the many GR variants expressed in the placenta. The current data also highlights that individual differences in glucocorticoid sensitivity, variations in the effect of different complications of pregnancy on birth outcomes and sex differences in the response to stress, may all be dependent on a specific GR isoform expression profile. This review will investigate the current state of knowledge of GR isoforms in the placenta and discuss the potential role of these multiple isoforms in regulating glucocorticoid sensitivity.
Steroids | 2015
Jesus Banuelos; Soon Cheon Shin; Nick Lu
Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting that the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance.
Allergy | 2017
Jesus Banuelos; Yun Cao; Soon Cheon Shin; Nick Lu
Th17 cells contribute to several inflammatory conditions and increasing evidence supports that Th17 cells are glucocorticoid resistant. However, Th17 cells in psoriasis and related diseases are glucocorticoid sensitive. We compare glucocorticoid sensitive and resistant immunological diseases and suggest that several aspects in Th17‐related diseases alter glucocorticoid sensitivity of Th17 cells. We identify molecular pathways that are implicated in glucocorticoid sensitivity of Th17 cells in the literature, as this information is useful for developing approaches to overcome glucocorticoid‐resistant immunopathology.
PLOS ONE | 2017
Jesus Banuelos; Yun Cao; Soon Cheon Shin; Bruce S. Bochner; Pedro C. Avila; Shihong Li; Xin Jiang; Mark W. Lingen; Robert P. Schleimer; Nick Lu
Glucocorticoids promote neutrophilic inflammation, the mechanisms of which are poorly characterized. Using a lipopolysaccharide (LPS)-induced acute murine lung injury model, we determined the role of granulocyte colony-stimulating factor (G-CSF) in mouse lung neutrophil numbers in the absence and presence of dexamethasone, a potent glucocorticoid. G-CSF was blocked using a neutralizing antibody. Airway neutrophil numbers, cytokine levels, and lung injury parameters were measured. Glucocorticoid treatment maintained LPS-induced airway G-CSF while suppressing TNF and IL-6. The addition of anti-G-CSF antibodies enabled dexamethasone to decrease airway G-CSF, neutrophils, and lung injury scores. In LPS-challenged murine lungs, structural cells and infiltrating leukocytes produced G-CSF. In vitro using BEAS 2B bronchial epithelial cells, A549 lung epithelial cells, human monocyte-derived macrophages, and human neutrophils, we found that dexamethasone and proinflammatory cytokines synergistically induced G-CSF. Blocking G-CSF production in BEAS 2B cells using shRNAs diminished the ability of BEAS 2B cells to protect neutrophils from undergoing spontaneous apoptosis. These data support that G-CSF plays a role in upregulation of airway neutrophil numbers by dexamethasone in the LPS-induced acute lung injury model.