Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nick P.J. Cotton is active.

Publication


Featured researches published by Nick P.J. Cotton.


Biochimica et Biophysica Acta | 1983

The relation between membrane ionic current and atp synthesis in chromatophores from rhodopseudomonas capsulata

A.J. Clark; Nick P.J. Cotton; J.B. Jackson

Abstract (1) Under conditions in which membrane potential (Δψ) was the sole contributor to the proton-motive force, the steady-state rate of ATP synthesis in chromatophores increased disproportionately when Δψ was increased: the rate had an approximately sixth-power dependence on Δψ. (2) Simultaneous measurements showed that the dissipative ionic current (JDIS) across the chromatophore membrane had a related dependence on Δψ, i.e., the membrane conductance increased markedly as Δψ increased. (3) For comparable Δψ values, JDIS was greater in phosphorylating than in non-phosphorylating chromatophores. For comparable actinic light intensities, Δψ was smaller in phosphorylating than in non-phosphorylating chromatophores. (4) At either low pH or in the presence of venturicidin, oligomycin or dicyclohexylcarbodiimide to inhibit ATP synthesis, JDIS was substantially depressed, particularly at high Δψ. Even under these conditions the membrane conductance was dependent on Δψ. (5) Also in intact cells, JDIS was depressed in the presence of venturicidin. Points 1–5 are interpreted in terms of a Δψ -driven H+ flux through the F0 channel of the ATPase synthase. The high-power dependence of the F0 conductance on Δψ determines the dependence of the rate of ATP synthesis on Δψ. The Δψ -dependent conductance of F0 dominates the electrical properties of the membrane. In chromatophores the ionic current accompanying ATP synthesis was more than 50% of the total membrane ionic current at maximal Δψ. (6) The rate of cyclic electron transport was calculated from JDIS. This led to an estimate of 0.77 ± 0.22 for the ATP 2 e − ratio and of 3.5 ± 1.3 for the H + ATP ratio. (7) Severe inhibition of the electron-transport rate by decreasing the light intensity led to an almost proportionate decrease in the rate of ATP synthesis. The chromatophores were able to maintain proportionality by confining electron-transport phosphorylation to a narrow range of Δψ. This is a consequence of the remarkable conductance properties of the membrane.


Structure | 2001

The Crystal Structure of an Asymmetric Complex of the Two Nucleotide Binding Components of Proton-Translocating Transhydrogenase

Nick P.J. Cotton; Scott A. White; Sarah J. Peake; Sean McSweeney; J. Baz Jackson

BACKGROUND Membrane-bound ion translocators have important functions in biology, but their mechanisms of action are often poorly understood. Transhydrogenase, found in animal mitochondria and bacteria, links the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. Linkage is achieved through changes in protein conformation at the nucleotide binding sites. The redox reaction takes place between two protein components located on the membrane surface: dI, which binds NAD(H), and dIII, which binds NADP(H). A third component, dII, provides a proton channel through the membrane. Intact membrane-located transhydrogenase is probably a dimer (two copies each of dI, dII, and dIII). RESULTS We have solved the high-resolution crystal structure of a dI:dIII complex of transhydrogenase from Rhodospirillum rubrum-the first from a transhydrogenase of any species. It is a heterotrimer, having two polypeptides of dI and one of dIII. The dI polypeptides fold into a dimer. The loop on dIII, which binds the nicotinamide ring of NADP(H), is inserted into the NAD(H) binding cleft of one of the dI polypeptides. The cleft of the other dI is not occupied by a corresponding dIII component. CONCLUSIONS The redox step in the transhydrogenase reaction is readily visualized; the NC4 atoms of the nicotinamide rings of the bound nucleotides are brought together to facilitate direct hydride transfer with A-B stereochemistry. The asymmetry of the dI:dIII complex suggests that in the intact enzyme there is an alternation of conformation at the catalytic sites associated with changes in nucleotide binding during proton translocation.


Biochimica et Biophysica Acta | 1985

The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria

Alastair G. McEwan; Nick P.J. Cotton; Stuart J. Ferguson; J.B. Jackson

Abstract Carotenoid absorbance changes were used to monitor the development of membrane potential in intact cell suspensions of Rhodopseudomonas capsulata strain N22. Low concentrations of phenazine methosulphate almost completely inhibited the generation of membrane potential in the light by anaerobic cells. The light-dependent reactions were restored by addition of either trimethylamine N -oxide, dimethylsulphoxide, nitrous oxide, or oxygen. In Rhodopseudomonas capsulata strain N22 DNAR + addition of nitrate was also effective. The inhibition by phenazine methosulphate and restoration by auxiliary oxidant were observed in the presence of sufficient rotenone to block NADH dehydrogenase or with low concentrations of uncoupling agent to dissipate the membrane potential under dark, anaerobic conditions. It is suggested that in intact cells of these organisms there are mechanisms which operate to maintain the electron-transport chain at an optimal redox poise for efficient photosynthesis. Phenazine methosulphate perturbs the optimal redox poise by hastening equilibrium of the photosynthetic electron-transport chain with low-potential couples in the cell. The addition of auxiliary oxidants restores the optimal redox poise. This suggests a role in photosynthesis for the pathways of respiratory electron flow to nitrate, nitrous oxide, trimethylamine N -oxide/dimethylsulphoxide and oxygen.


Journal of Biological Chemistry | 1997

Evidence That the Transfer of Hydride Ion Equivalents between Nucleotides by Proton-translocating Transhydrogenase Is Direct

Jamie D. Venning; Rachel L. Grimley; Tania Bizouarn; Nick P.J. Cotton; J.B. Jackson

The molecular masses of the purified, recombinant nucleotide-binding domains (domains I and III) of transhydrogenase from Rhodospirillum rubrum were determined by electrospray mass spectrometry. The values obtained, 40,273 and 21,469 Da, for domains I and III, respectively, are similar to those estimated from the amino acid sequences of the proteins. Evidently, there are no prosthetic groups or metal centers that can serve as reducible intermediates in hydride transfer between nucleotides bound to these proteins. The transient-state kinetics of hydride transfer catalyzed by mixtures of recombinant domains I and III were studied by stopped-flow spectrophotometry. The data indicate that oxidation of NADPH, bound to domain III, and reduction of acetylpyridine adenine dinucleotide (an NAD+ analogue), bound to domain I, are simultaneous and very fast. The transient-state reaction proceeds as a biphasic burst of hydride transfer before establishment of a steady state, which is limited by slow release of NADP+. Hydride transfer between the nucleotides is evidently direct. This conclusion indicates that the nicotinamide rings of the nucleotides are in close apposition during the hydride transfer reaction, and it imposes firm constraints on the mechanism by which transhydrogenation is linked to proton translocation.


FEBS Letters | 1999

Structural changes in the recombinant, NADP(H)-binding component of proton translocating transhydrogenase revealed by NMR spectroscopy

Philip G. Quirk; Mark Jeeves; Nick P.J. Cotton; John K. Smith; Baz J. Jackson

We have analysed 1H, 15N‐HSQC spectra of the recombinant, NADP(H)‐binding component of transhydrogenase in the context of the emerging three dimensional structure of the protein. Chemical shift perturbations of amino acid residues following replacement of NADP+ with NADPH were observed in both the adenosine and nicotinamide parts of the dinucleotide binding site and in a region which straddles the protein. These observations reflect the structural changes resulting from hydride transfer. The interactions between the recombinant, NADP(H)‐binding component and its partner, NAD(H)‐binding protein, are complicated. Helix B of the recombinant, NADP(H)‐binding component may play an important role in the binding process.


Biochimica et Biophysica Acta | 2000

Solution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from Rhodospirillum rubrum

Mark Jeeves; K. John Smith; Philip G. Quirk; Nick P.J. Cotton; J. Baz Jackson

Transhydrogenase is a proton pump found in the membranes of bacteria and animal mitochondria. The solution structure of the expressed, 21.5 kDa, NADP(H)-binding component (dIII) of transhydrogenase from Rhodospirillum rubrum has been solved by NMR methods. This is the first description of the structure of dIII from a bacterial source. The protein adopts a Rossmann fold: an open, twisted, parallel beta-sheet, flanked by helices. However, the binding of NADP(+) to dIII is profoundly different to that seen in other Rossmann structures, in that its orientation is reversed: the adenosine moiety interacts with the first betaalphabetaalphabeta motif, and the nicotinamide with the second. Features in the structure that might be responsible for changes in nucleotide-binding affinity during catalysis, and for interaction with other components of the enzyme, are identified. The results are compared with the recently determined, high-resolution crystal structures of human and bovine dIII which also show the reversed nucleotide orientation.


Biochimica et Biophysica Acta | 1998

Interdomain hydride transfer in proton-translocating transhydrogenase.

J. Baz Jackson; Philip G. Quirk; Nick P.J. Cotton; Jamie D. Venning; Susmita Gupta; Tania Bizouarn; Sarah J. Peake; Christopher M. Thomas

We describe the use of the recombinant, nucleotide-binding domains (domains I and III) of transhydrogenase to study structural, functional and dynamic features of the protein that are important in hydride transfer and proton translocation. Experiments on the transient state kinetics of the reaction show that hydride transfer takes place extremely rapidly in the recombinant domain I:III complex, even in the absence of the membrane-spanning domain II. We develop the view that proton translocation through domain II is coupled to changes in the binding characteristics of NADP+ and NADPH in domain III. A mobile loop region which emanates from the surface of domain I, and which interacts with NAD+ and NADH during nucleotide binding has been studied by NMR spectroscopy and site-directed mutagenesis. An important role for the loop region in the process of hydride transfer is revealed.


Biochimica et Biophysica Acta | 1982

The kinetics of carotenoid absorption changes in intact cells of photosynthetic bacteria

Nick P.J. Cotton; J.B. Jackson

Abstract The kinetics of carotenoid absorption changes have been measured in intact cells of Rhodopseudomonas capsulata after short flash excitation. The observed changes were consistent with the thesis that they indicate the development and dissipation of membrane potential. In the generation of the absorption changes in anaerobic cells, fast (complete in 0.5 ms) and slow (half-time 3 ms) components can be distinguished. The slow component corresponds kinetically to the rate of cytochrome c re-reduction and is similarly antimycin sensitive. These data are similar to those observed in isolated chromatophores which have been artifically poised with redox mediators. In aerobic intact cells the kinetic profile is altered, mainly because the decay of the carotenoid change is much faster. Inhibition of respiration with KCN leads to flash-induced changes similar to those in anaerobic cells. At least two components can be distinguished in the decay of the carotenoid absorption changes in anaerobic intact cells. Only the faster decay component was inhibited by venturicidin which suggests that it corresponds to H+ flux through the F0F1-ATPase during ATP synthesis. The contribution of the venturicidin-sensitive decay to the total decay was dependent upon the initial amplitude of the carotenoid absorption change produced by the flash group. This suggests that there is an apparent threshold of membrane potential for ATP synthesis. Supporting evidence was provided by the finding that venturicidin stimulated the steady-state light-induced carotenoid absorption change at high but not at low light intensities. The entire decay of the carotenoid absorption changes was stimulated by carbonyl cyanide p-trifluoromethoxyphenylhydrazone in a manner that can be interpreted as an ionophore catalysing the dissipation of membrane potential.


Biochimica et Biophysica Acta | 1999

Evidence for the stabilization of NADPH relative to NADP(+) on the dIII components of proton-translocating transhydrogenases from Homo sapiens and from Rhodospirillum rubrum by measurement of tryptophan fluorescence.

Sarah J. Peake; Jamie D. Venning; Nick P.J. Cotton; J. Baz Jackson

A unique Trp residue in the recombinant dIII component of transhydrogenase from human heart mitochondria (hsdIII), and an equivalent Trp engineered into the dIII component of Rhodospirillum rubrum transhydrogenase (rrdIII.D155W), are more fluorescent when NADP(+) is bound to the proteins, than when NADPH is bound. We have used this to determine the occupancy of the binding site during transhydrogenation reactions catalysed by mixtures of recombinant dI from the R. rubrum enzyme and either hsdIII or rrdIII.D155W. The standard redox potential of NADP(+)/NADPH bound to the dIII proteins is some 60-70 mV higher than that in free solution. This results in favoured reduction of NADP(+) by NADH at the catalytic site, and supports the view that changes in affinity at the nucleotide-binding site of dIII are central to the mechanism by which transhydrogenase is coupled to proton translocation across the membrane.


FEBS Letters | 1987

The dependence of the rate of transhydrogenase on the value of the protonmotive force in chromatophores from photosynthetic bacteria

Nick P.J. Cotton; J.F. Myatt; J.B. Jackson

In conditions where the pH gradient is negligible, the rate of the pyridine nucleotide transhydrogenase in chromatophores of Rhodobacter capsulatus has a threshold dependence on membrane potential. The relationship is similar when either antimycin or myxothiazal or carbonyl cyanide p‐trifluoromethoxyphenylhydrazone is used to depress the membrane potential. The relationship is distorted when membrane potential is reduced by lowering the photosynthetic light intensity.

Collaboration


Dive into the Nick P.J. Cotton's collaboration.

Top Co-Authors

Avatar

J. Baz Jackson

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

J.B. Jackson

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah J. Peake

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mark Jeeves

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Scott A. White

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge