Niclas Bernhoff
Karlstad University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niclas Bernhoff.
Archive | 2003
Alexander Bobylev; Niclas Bernhoff
We study some questions related to general discrete velocity (with arbitrarily number of velocities) models (DVMs) of the Boltzmann equation. In the case of plane stationary problems the typical DVM reduces to a dynamical system (system of ODEs). Properties of such systems are studied in the most general case. In particular, a topological classification of their singular points is made and dimensions of the corresponding stable, unstable and center manifolds are computed. These results are applied to typical half-space problems of rarefied gas dynamics, including the problems of Milne and Kramer. A classification of well-posed half-space problems for linearized DVMs is made. Exact solutions of a (simplified) linearized kinetic model of BGK type are found as a limiting case of the corresponding discrete models. Existence of solutions of weakly non-linear half-space problems for general DVMs are studied. The solutions are assumed to tend to an assigned Maxwellian at infinity, and the data for the outgoing particles at the boundary are assigned, possibly depending on the data for the incoming particles. The conditions, on the data at the boundary, needed for the existence of a unique (in a neighborhood of the assigned Maxwellian) solution of the problem are investigated. Both implicit, in the non-degenerate cases, and sometimes, in both degenerate and non-degenerate cases, explicit conditions are found. Shock-waves can be seen as heteroclinic orbits connecting two singular points (Maxwellians) for DVMs. We give a constructive proof for the existence of solutions of the shock-wave problem for the general DVM. This is worked out for shock speeds close to a typical speed, corresponding to the sound speed in the continuous case. We clarify how close the shock speed must be for our theorem to hold, and present an iteration scheme for obtaining the solution. The main results of the paper can be used for DVMs for mixtures as well as for DVMs for one species.
30th International Symposium on Rarefied Gas Dynamics, 10-15 July 2016, Victoria, BC, Canada | 2016
Niclas Bernhoff
An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that, in difference to in the continuous case, DVMs can have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single species as well as for binary mixtures. For binary mixtures also the concept of supernormal DVMs has been introduced by Bobylev and Vinerean. Supernormal DVMs are defined as normal DVMs such that both restrictions to the different species are normal as DVMs for single species.In this presentation we extend the concept of supernormal DVMs to the case of multicomponent mixtures and introduce it for polyatomic molecules. By polyatomic molecules we mean here that each molecule has one of a finite numb...
International Journal of Differential Equations | 2016
Niclas Bernhoff
We consider the existence of nonlinear boundary layers and the typically nonlinear problem of existence of shock profiles for the Broadwell model, which is a simplified discrete velocity model for ...
28th International Symposium on Rarefied Gas Dynamics 2012, July 9 - 13, Zaragoza | 2012
Niclas Bernhoff
Half-space problems for the Boltzmann equation are of great importance in the study of the asymptotic behavior of the solutions of boundary value problems of the Boltzmann equation for small Knudsen numbers. Half-space problems provide the boundary conditions for the fluid-dynamic-type equations and Knudsen-layer corrections to the solution of the fluid-dynamic-type equations in a neighborhood of the boundary. Here we consider a half-space problem of condensation for a pure vapor in the presence of a non-condensable gas by using discrete velocity models (DVMs) of the Boltzmann equation. The Boltzmann equation can be approximated by DVMs up to any order, and these DVMs can be applied for numerical methods, but also for mathematical studies to bring deeper understanding and new ideas. For one-dimensional half-space problems, the discrete Boltzmann equation (the general DVM) reduces to a system of ODEs. We obtain that the number of parameters to be specified in the boundary conditions depends on whether the condensing vapor flow is subsonic or supersonic. This behavior has earlier been found numerically. We want to stress that our results are valid for any finite number of velocities. This is an extension of known results for single-component gases (and for binary mixtures of two vapors) to the case when a non-condensable gas is present. The vapor is assumed to tend to an assigned Maxwellian, with a flow velocity towards the condensed phase, at infinity, while the non-condensable gas tends to zero at infinity. Steady condensation of the vapor takes place at the condensed phase, which is held at a constant temperature. We assume that the vapor is completely absorbed, that the non-condensable gas is diffusively reflected at the condensed phase, and that vapor molecules leaving the condensed phase are distributed according to a given distribution. The conditions, on the given distribution at the condensed phase, needed for the existence of a unique solution of the problem are investigated, assuming that the given distribution at the condensed phase is sufficiently close to the Maxwellian at infinity and that the total mass of the non-condensable gas is sufficiently small. Exact solutions and solvability conditions are found for a specific simplified discrete velocity model (with few velocities).
Communications in Mathematical Sciences | 2007
Niclas Bernhoff; Alexander Bobylev
Kinetic and Related Models | 2010
Niclas Bernhoff
Rivista di Matematica della Universita' di Parma | 2008
Niclas Bernhoff
Kinetic and Related Models | 2012
Niclas Bernhoff
Journal of Statistical Physics | 2016
Niclas Bernhoff; Mirela Vinerean
Kinetic and Related Models | 2017
Niclas Bernhoff