Niclas Engene
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niclas Engene.
International Journal of Systematic and Evolutionary Microbiology | 2012
Niclas Engene; Erin C. Rottacker; Jan Kaštovský; Tara Byrum; Hyukjae Choi; Mark H. Ellisman; Jiří Komárek; William H. Gerwick
The filamentous cyanobacterial genus Moorea gen. nov., described here under the provisions of the International Code of Botanical Nomenclature, is a cosmopolitan pan-tropical group abundant in the marine benthos. Members of the genus Moorea are photosynthetic (containing phycocyanin, phycoerythrin, allophycocyanin and chlorophyll a), but non-diazotrophic (lack heterocysts and nitrogenase reductase genes). The cells (discoid and 25-80 µm wide) are arranged in long filaments (<10 cm in length) and often form extensive mats or blooms in shallow water. The cells are surrounded by thick polysaccharide sheaths covered by a rich diversity of heterotrophic micro-organisms. A distinctive character of this genus is its extraordinarily rich production of bioactive secondary metabolites. This is matched by genomes rich in polyketide synthase and non-ribosomal peptide synthetase biosynthetic genes which are dedicated to secondary metabolism. The encoded natural products are sometimes responsible for harmful algae blooms and, due to morphological resemblance to the genus Lyngbya, this group has often been incorrectly cited in the literature. We here describe two species of the genus Moorea: Moorea producens sp. nov. (type species of the genus) with 3L(T) as the nomenclature type, and Moorea bouillonii comb. nov. with PNG5-198(R) as the nomenclature type.
Natural Product Reports | 2012
Pedro N. Leão; Niclas Engene; Agostinho Antunes; William H. Gerwick; Vitor Vasconcelos
This review covers the literature on the chemically mediated ecology of cyanobacteria, including ultraviolet radiation protection, feeding-deterrence, allelopathy, resource competition, and signalling. To highlight the chemical and biological diversity of this group of organisms, evolutionary and chemotaxonomical studies are presented. Several technologically relevant aspects of cyanobacterial chemical ecology are also discussed.
ChemBioChem | 2010
Kevin Tidgewell; Niclas Engene; Tara Byrum; Joseph Media; Takayuki Doi; Fred Valeriote; William H. Gerwick
A collection of Lyngbya bouillonii from Palmyra Atoll in the Central Pacific, a site several thousand kilometers distant from all previous collections of this chemically prolific species of cyanobacterium, was found to contain two new cancer cell cytotoxins of the apratoxin family. The structures of the new compounds, apratoxins F and G, were determined by 1D and 2D NMR techniques in combination with mass spectrometric methods. Stereochemistry was explored by using chromatographic analyses of the hydrolytically released fragments in combination with NMR and optical rotation comparisons with known members of the apratoxin family. Apratoxins F and G add fresh insights into the SAR of this family because they incorporate an N‐methyl alanine residue at a position where all prior apratoxins have possessed a proline unit, yet they retain high potency as cytotoxins to H‐460 cancer cells with IC50 values of 2 and 14 nM, respectively. Additional assays using zone inhibition of cancer cells and clonogenic cells give a comparison of the activities of apratoxin F to apratoxin A. Additionally, the clonogenic studies in combination with maximum tolerated dose (MTD) studies provided insights as to dosing schedules that should be used for in vivo studies, and preliminary in vivo evaluation validated the predicted in vivo efficacy for apratoxin A. These new apratoxins are illustrative of a mechanism (the modification of an NRPS adenylation domain specificity pocket) for evolving a biosynthetic pathway so as to diversify the suite of expressed secondary metabolites.
Journal of Natural Products | 2010
Hyukjae Choi; Alban R. Pereira; Zhengyu Cao; Cynthia F. Shuman; Niclas Engene; Tara Byrum; Teatulohi Matainaho; Thomas F. Murray; Alfonso Mangoni; William H. Gerwick
Two related peptide metabolites, one a cyclic depsipeptide, hoiamide B (2), and the other a linear lipopeptide, hoiamide C (3), were isolated from two different collections of marine cyanobacteria obtained in Papua New Guinea. Their structures were elucidated by combining various techniques in spectroscopy, chromatography, and synthetic chemistry. Both metabolites belong to the unique hoiamide structural class, characterized by possessing an acetate extended and S-adenosyl methionine modified isoleucine unit, a central triheterocyclic system comprised of two alpha-methylated thiazolines and one thiazole, and a highly oxygenated and methylated C-15 polyketide unit. In neocortical neurons, the cyclic depsipeptide 2 stimulated sodium influx and suppressed spontaneous Ca(2+) oscillations with EC(50) values of 3.9 microM and 79.8 nM, respectively, while 3 had no significant effects in these assays.
Journal of Natural Products | 2008
Benjamin R. Clark; Niclas Engene; Margaret E. Teasdale; David C. Rowley; Teatulohi Matainaho; Frederick A. Valeriote; William H. Gerwick
A Papua New Guinea field collection of the marine cyanobacterium Blennothrix cantharidosmum was investigated for its cytotoxic constituents. Bioassay-guided isolation defined the cytotoxic components as the known compounds lyngbyastatins 1 and 3. However, six new acyl proline derivatives, tumonoic acids D-I, plus the known tumonoic acid A were also isolated. Their planar structures were defined from NMR and MS data, while their stereostructures followed from a series of chiral chromatographies, degradation sequences, and synthetic approaches. The new compounds were tested in an array of assays, but showed only modest antimalarial and inhibition of quorum sensing activities. Nevertheless, these are the first natural products to be reported from this genus, and this inspired a detailed morphologic and 16S rDNA-based phylogenetic analysis of the producing organism.
Organic Letters | 2010
Alban R. Pereira; Zhengyu Cao; Niclas Engene; Irma E. Soria-Mercado; Thomas F. Murray; William H. Gerwick
Palmyrolide A (1) is a new neuroactive macrolide isolated from a marine cyanobacterial assemblage composed of Leptolyngbya cf. and Oscillatoria spp. collected from Palmyra Atoll. It features a rare N-methyl enamide and an intriguing t-butyl branch; the latter renders the adjacent lactone ester bond resistant to hydrolysis. Consistent with its significant suppression of calcium influx in cerebrocortical neurons (IC(50) = 3.70 μM), palmyrolide A (1) showed a relatively potent sodium channel blocking activity in neuro-2a cells (IC(50) = 5.2 μM), without appreciable cytotoxicity.
Environmental Microbiology | 2011
Niclas Engene; Hyukjae Choi; Eduardo Esquenazi; Erin C. Rottacker; Mark H. Ellisman; Pieter C. Dorrestein; William H. Gerwick
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS² and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.
Journal of Phycology | 2010
Niclas Engene; R. Cameron Coates; William H. Gerwick
The SSU (16S) rRNA gene was used to investigate the phylogeny of the cyanobacterial genus Lyngbya as well as examined for its capacity to discriminate between different marine species of Lyngbya. We show that Lyngbya forms a polyphyletic genus composed of a marine lineage and a halophilic/brackish/freshwater lineage. In addition, we found morphological and genetic evidence that Lyngbya spp. often grow in association with other microorganisms, in particular smaller filamentous cyanobacteria such as Oscillatoria, and propose that these associated microorganisms have led to extensive phylogenetic confusion in identification of Lyngbya spp. At the species level, the phylogenetic diversity obtained from the comparison of 16S rRNA genes exceeded morphological diversity in Lyngbya. However, the expectation that this improved phylogeny would be useful to species and subspecies identification was eliminated by the fact that phylogenetic species did not correlate in any respect with the species obtained from current taxonomic systems. In addition, phylogenetic identification was adversely affected by the presence of multiple gene copies within individual Lyngbya colonies. Analysis of clonal Lyngbya cultures and multiple displacement amplified (MDA) single‐cell genomes revealed that Lyngbya genomes contain two 16S rRNA gene copies, and that these typically are of variable sequence. Furthermore, intragenomic and interspecies 16S rRNA gene heterogeneity was approximately of the same magnitude. Hence, the intragenomic heterogeneity of the 16S rRNA gene overestimates the microdiversity of different strains and does not accurately reflect speciation within cyanobacteria, including the genus Lyngbya.
Journal of Phycology | 2013
Niclas Engene; Valerie J. Paul; Tara Byrum; William H. Gerwick; Andrea Thor; Mark H. Ellisman
An adverse consequence of applying morphology‐based taxonomic systems to catalog cyanobacteria, which generally are limited in the number of available morphological characters, is a fundamental underestimation of natural biodiversity. In this study, we further dissect the polyphyletic cyanobacterial genus Lyngbya and delineate the new genus Okeania gen. nov. Okeania is a tropical and subtropical, globally distributed marine group abundant in the shallow‐water benthos. Members of Okeania are of considerable ecological and biomedical importance because specimens within this group biosynthesize biologically active secondary metabolites and are known to form blooms in coastal benthic environments. Herein, we describe five species of the genus Okeania: O. hirsuta (type species of the genus), O. plumata, O. lorea, O. erythroflocculosa, and O. comitata, under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants. All five Okeania species were morphologically, phylogenetically, and chemically distinct. This investigation provides a classification system that is able to identify Okeania spp. and predict their production of bioactive secondary metabolites.
Journal of Organic Chemistry | 2012
Joshawna K. Nunnery; Niclas Engene; Tara Byrum; Zhengyu Cao; Sairam V. Jabba; Alban R. Pereira; Teatulohi Matainaho; Thomas F. Murray; William H. Gerwick
Five new vinylchlorine-containing metabolites, the lipoamides janthielamide A and kimbeamides A-C and the ketide-extended pyranone kimbelactone A, have been isolated from collections of marine cyanobacteria made in Curaçao and Papua New Guinea. Both janthielamide A and kimbeamide A exhibited moderate sodium channel blocking activity in murine Neuro-2a cells. Consistent with this activity, janthielamide A was also found to antagonize veratridine-induced sodium influx in murine cerebrocortical neurons. These lipoamides represent the newest additions to a relatively rare family of marine cyanobacterial-derived lipoamides and a new structural class of compounds exhibiting neuromodulatory activities from marine cyanobacteria.