Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nico Lachmann is active.

Publication


Featured researches published by Nico Lachmann.


Nature | 2014

Pulmonary macrophage transplantation therapy

Takuji Suzuki; Paritha Arumugam; Takuro Sakagami; Nico Lachmann; Claudia Chalk; Anthony Sallese; Shuichi Abe; Cole Trapnell; Brenna Carey; Thomas Moritz; Punam Malik; Carolyn Lutzko; Robert E. Wood; Bruce C. Trapnell

Bone-marrow transplantation is an effective cell therapy but requires myeloablation, which increases infection risk and mortality. Recent lineage-tracing studies documenting that resident macrophage populations self-maintain independently of haematological progenitors prompted us to consider organ-targeted, cell-specific therapy. Here, using granulocyte–macrophage colony-stimulating factor (GM-CSF) receptor-β-deficient (Csf2rb−/−) mice that develop a myeloid cell disorder identical to hereditary pulmonary alveolar proteinosis (hPAP) in children with CSF2RA or CSF2RB mutations, we show that pulmonary macrophage transplantation (PMT) of either wild-type or Csf2rb-gene-corrected macrophages without myeloablation was safe and well-tolerated and that one administration corrected the lung disease, secondary systemic manifestations and normalized disease-related biomarkers, and prevented disease-specific mortality. PMT-derived alveolar macrophages persisted for at least one year as did therapeutic effects. Our findings identify mechanisms regulating alveolar macrophage population size in health and disease, indicate that GM-CSF is required for phenotypic determination of alveolar macrophages, and support translation of PMT as the first specific therapy for children with hPAP.


Science Translational Medicine | 2014

Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis

Christine Happle; Nico Lachmann; Jelena Skuljec; Martin Wetzke; Mania Ackermann; Sebastian Brennig; Adele Mucci; Adan Chari Jirmo; Stephanie Groos; Anja Mirenska; Christina Hennig; Thomas Rodt; Jens P. Bankstahl; Nicolaus Schwerk; Thomas Moritz; Gesine Hansen

Macrophage progenitors are an effective and long-lasting therapy of hereditary pulmonary alveolar proteinosis. Macrophages Treat Rare Lung Disease Innate immune cell transplant into the lung could be an effective treatment for a rare lung disease. Happle et al. report that transplanting macrophage progenitors into lungs of a mouse model of hereditary pulmonary alveolar proteinosis (herPAP) improved lung function for up to 9 months after transplant. herPAP is caused by mutations in the granulocyte-macrophage colony-stimulating factor receptor genes, resulting in disturbed alveolar macrophage differentiation and life-threatening respiratory problems. A single transplantation of macrophage progenitors into a mouse model of herPAP resulted in differentiation into functional alveolar macrophages. If these data hold true in humans, this could not only provide a new treatment modality for herPAP but also serve as a proof of principle for other genetic diseases. Hereditary pulmonary alveolar proteinosis (herPAP) is a rare lung disease caused by mutations in the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor genes, resulting in disturbed alveolar macrophage differentiation, massive alveolar proteinosis, and life-threatening respiratory insufficiency. So far, the only effective treatment for herPAP is repetitive whole-lung lavage, a merely symptomatic and highly invasive procedure. We introduce pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for herPAP. In a murine disease model, intrapulmonary transplanted macrophage progenitors displayed selective, long-term pulmonary engraftment and differentiation into functional alveolar macrophages. A single transplantation ameliorated the herPAP phenotype for at least 9 months, resulting in significantly reduced alveolar proteinosis, normalized lung densities in chest computed tomography, and improved lung function. A significant and sustained disease resolution was also observed in a second, humanized herPAP model after intrapulmonary transplantation of human macrophage progenitors. The therapeutic effect was mediated by long-lived, lung-resident macrophages, which displayed functional and phenotypical characteristics of primary human alveolar macrophages. Our findings present the concept of organotopic transplantation of macrophage progenitors as an effective and long-lasting therapy of herPAP and may also serve as a proof of principle for other diseases, expanding current stem cell–based strategies toward potent concepts using the transplantation of differentiated cells.


American Journal of Respiratory and Critical Care Medicine | 2013

Gene Correction of Human Induced Pluripotent Stem Cells Repairs the Cellular Phenotype in Pulmonary Alveolar Proteinosis

Nico Lachmann; Christine Happle; Mania Ackermann; Doreen Lüttge; Martin Wetzke; Sylvia Merkert; Miriam Hetzel; George Kensah; Monica Jara-Avaca; Adele Mucci; Jelena Skuljec; Anna-Maria Dittrich; Nils Pfaff; Sebastian Brennig; Axel Schambach; Doris Steinemann; Gudrun Göhring; Tobias Cantz; Ulrich Martin; Nicolaus Schwerk; Gesine Hansen; Thomas Moritz

RATIONALE Hereditary pulmonary alveolar proteinosis (hPAP) caused by granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain (CSF2RA) deficiency is a rare, life-threatening lung disease characterized by accumulation of proteins and phospholipids in the alveolar spaces. The disease is caused by a functional insufficiency of alveolar macrophages, which require GM-CSF signaling for terminal differentiation and effective degradation of alveolar proteins and phospholipids. Therapeutic options are extremely limited, and the pathophysiology underlying the defective protein degradation in hPAP alveolar macrophages remains poorly understood. OBJECTIVES To further elucidate the cellular mechanisms underlying hPAP and evaluate novel therapeutic strategies, we here investigated the potential of hPAP patient-derived induced pluripotent stem cell (PAP-iPSCs) derived monocytes and macrophages. METHODS Patient-specific PAP-iPSCs were generated from CD34(+) bone marrow cells of a CSF2RA-deficient patient with PAP. We assessed pluripotency, chromosomal integrity, and genetic correction of established iPSC lines. On hematopoietic differentiation, genetically corrected or noncorrected monocytes and macrophages were investigated in GM-CSF-dependent assays. MEASUREMENTS AND MAIN RESULTS Although monocytes and macrophages differentiated from noncorrected PAP-iPSCs exhibited distinct defects in GM-CSF-dependent functions, such as perturbed CD11b activation, phagocytic activity, and STAT5 phosphorylation after GM-CSF exposure and lack of GM-CSF uptake, these defects were fully repaired on lentiviral gene transfer of a codon-optimized CSF2RA-cDNA. CONCLUSIONS These data establish PAP-iPSC-derived monocytes and macrophages as a valid in vitro disease model of CSF2RA-deficient PAP, and introduce gene-corrected iPSC-derived monocytes and macrophages as a potential autologous cell source for innovative therapeutic strategies. Transplantation of such cells to patients with hPAP could serve as a paradigmatic proof for the potential of iPSC-derived cells in clinical gene therapy.


Stem Cells | 2013

A ubiquitous chromatin opening element prevents transgene silencing in pluripotent stem cells and their differentiated progeny

Nils Pfaff; Nico Lachmann; Mania Ackermann; Saskia Kohlscheen; Christian Brendel; Tobias Maetzig; Heiner Niemann; Michael Antoniou; Manuel Grez; Axel Schambach; Tobias Cantz; Thomas Moritz

Methylation‐induced gene silencing represents a major obstacle to efficient transgene expression in pluripotent cells and thereof derived tissues. As ubiquitous chromatin opening elements (UCOE) have been shown to prevent transgene silencing in cell lines and primary hematopoietic cells, we hypothesized a similar activity in pluripotent cells. This concept was investigated in the context of cytidine deaminase (CDD) gene transfer, an approach to render hematopoietic cells resistant to the chemotherapeutic agent Ara‐C. When murine induced pluripotent stem cells (iPSC)/embryonic stem cells (ESCs) were transduced with self‐inactivating lentiviral vectors using housekeeping (truncated elongation factor 1α; EFS) or viral (spleen focus‐forming virus; SFFV) promoters, incorporation of an heterogeneous nuclear ribonucleoproteins A2 B1/chromobox protein homolog 3 locus‐derived UCOE (A2UCOE) significantly increased transgene expression and Ara‐C resistance and effectively prevented silencing of the SFFV‐promoter. The EFS promoter showed relatively stable transgene expression in naïve iPSCs, but rapid transgene silencing was observed upon hematopoietic differentiation. When combined with the A2UCOE, however, the EFS promoter yielded stable transgene expression in 73% ± 6% of CD41+ hematopoietic progeny, markedly increased CDD expression levels, and significantly enhanced Ara‐C resistance in clonogenic cells. Bisulfite sequencing revealed protection from differentiation‐induced promoter CpG methylation to be associated with these effects. Similar transgene promoting activities of the A2UCOE were observed during murine neurogenic differentiation, in naïve human pluripotent cells, and during nondirected multilineage differentiation of these cells. Thus, our data provide strong evidence that UCOEs can efficiently prevent transgene silencing in iPS/ESCs and their differentiated progeny and thereby introduce a generalized concept to circumvent differentiation‐induced transgene silencing during the generation of advanced iPSC/ESC‐based gene and cell therapy products. STEM CELLS2013;31:488–499


Stem cell reports | 2015

Large-Scale Hematopoietic Differentiation of Human Induced Pluripotent Stem Cells Provides Granulocytes or Macrophages for Cell Replacement Therapies

Nico Lachmann; Mania Ackermann; Eileen Frenzel; Steffi Liebhaber; Sebastian Brennig; Christine Happle; Dirk Hoffmann; Olga Klimenkova; Doreen Lüttge; Theresa Buchegger; Mark Philipp Kühnel; Axel Schambach; Sabina Janciauskiene; Constanca Figueiredo; Gesine Hansen; Julia Skokowa; Thomas Moritz

Summary Interleukin-3 (IL-3) is capable of supporting the proliferation of a broad range of hematopoietic cell types, whereas granulocyte colony-stimulating factor (G-CSF) and macrophage CSF (M-CSF) represent critical cytokines in myeloid differentiation. When this was investigated in a pluripotent-stem-cell-based hematopoietic differentiation model, IL-3/G-CSF or IL-3/M-CSF exposure resulted in the continuous generation of myeloid cells from an intermediate myeloid-cell-forming complex containing CD34+ clonogenic progenitor cells for more than 2 months. Whereas IL-3/G-CSF directed differentiation toward CD45+CD11b+CD15+CD16+CD66b+ granulocytic cells of various differentiation stages up to a segmented morphology displaying the capacity of cytokine-directed migration, respiratory burst response, and neutrophil-extracellular-trap formation, exposure to IL-3/M-CSF resulted in CD45+CD11b+CD14+CD163+CD68+ monocyte/macrophage-type cells capable of phagocytosis and cytokine secretion. Hence, we show here that myeloid specification of human pluripotent stem cells by IL-3/G-CSF or IL-3/M-CSF allows for prolonged and large-scale production of myeloid cells, and thus is suited for cell-fate and disease-modeling studies as well as gene- and cell-therapy applications.


Biomaterials | 2015

TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells

Anne-Kathrin Dreyer; Dirk Hoffmann; Nico Lachmann; Mania Ackermann; Doris Steinemann; Barbara Timm; Ulrich Siler; Janine Reichenbach; Manuel Grez; Thomas Moritz; Axel Schambach; Toni Cathomen

X-linked chronic granulomatous disease (X-CGD) is an inherited disorder of the immune system. It is characterized by a defect in the production of reactive oxygen species (ROS) in phagocytic cells due to mutations in the NOX2 locus, which encodes gp91phox. Because the success of retroviral gene therapy for X-CGD has been hampered by insertional activation of proto-oncogenes, targeting the insertion of a gp91phox transgene into potential safe harbor sites, such as AAVS1, may represent a valid alternative. To conceptually evaluate this strategy, we generated X-CGD patient-derived induced pluripotent stem cells (iPSCs), which recapitulate the cellular disease phenotype upon granulocytic differentiation. We examined AAVS1-specific zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for their efficacy to target the insertion of a myelo-specific gp91phox cassette to AAVS1. Probably due to their lower cytotoxicity, TALENs were more efficient than ZFNs in generating correctly targeted iPSC colonies, but all corrected iPSC clones showed no signs of mutations at the top-ten predicted off-target sites of both nucleases. Upon differentiation of the corrected X-CGD iPSCs, gp91phox mRNA levels were highly up-regulated and the derived granulocytes exhibited restored ROS production that induced neutrophil extracellular trap (NET) formation. In conclusion, we demonstrate that TALEN-mediated integration of a myelo-specific gp91phox transgene into AAVS1 of patient-derived iPSCs represents a safe and efficient way to generate autologous, functionally corrected granulocytes.


Biomaterials | 2014

Promoter and lineage independent anti-silencing activity of the A2 ubiquitous chromatin opening element for optimized human pluripotent stem cell-based gene therapy

Mania Ackermann; Nico Lachmann; Susann Hartung; Reto Eggenschwiler; Nils Pfaff; Christine Happle; Adele Mucci; Gudrun Göhring; Heiner Niemann; Gesine Hansen; Axel Schambach; Tobias Cantz; Robert Zweigerdt; Thomas Moritz

Epigenetic silencing of retroviral transgene expression in pluripotent stem cells (PSC) and their differentiated progeny constitutes a major roadblock for PSC-based gene therapy. As ubiquitous chromatin opening elements (UCOEs) have been successfully employed to stabilize transgene expression in murine hematopoietic and pluripotent stem cells as well as their differentiated progeny, we here investigated UCOE activity in their human counterparts to establish a basis for future clinical application of the element. To this end, we demonstrate profound anti-silencing activity of the A2UCOE in several human iPS and ES cell lines including their progeny obtained upon directed cardiac or hematopoietic differentiation. We also provide evidence for A2UCOE activity in murine iPSC-derived hepatocyte-like cells, thus establishing efficacy of the element in cells of different germ layers. Finally, we investigated combinations of the A2UCOE with viral promoter/enhancer elements again demonstrating profound stabilization of transgene expression. In all these settings the effect of the A2UCOE was associated with strongly reduced promoter DNA-methylation. Thus, our data clearly support the concept of the A2UCOE as a generalized strategy to prevent epigenetic silencing in PSC and their differentiated progeny and strongly favors its application to stabilize transgene expression in PSC-based cell and gene therapy approaches.


Nucleic Acids Research | 2015

A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells

Uta Müller-Kuller; Mania Ackermann; Stephan Kolodziej; Christian Brendel; Jessica Fritsch; Nico Lachmann; Hana Kunkel; Jörn Lausen; Axel Schambach; Thomas Moritz; Manuel Grez

Epigenetic silencing of transgene expression represents a major obstacle for the efficient genetic modification of multipotent and pluripotent stem cells. We and others have demonstrated that a 1.5 kb methylation-free CpG island from the human HNRPA2B1-CBX3 housekeeping genes (A2UCOE) effectively prevents transgene silencing and variegation in cell lines, multipotent and pluripotent stem cells, and their differentiated progeny. However, the bidirectional promoter activity of this element may disturb expression of neighboring genes. Furthermore, the epigenetic basis underlying the anti-silencing effect of the UCOE on juxtaposed promoters has been only partially explored. In this study we removed the HNRPA2B1 moiety from the A2UCOE and demonstrate efficient anti-silencing properties also for a minimal 0.7 kb element containing merely the CBX3 promoter. This DNA element largely prevents silencing of viral and tissue-specific promoters in multipotent and pluripotent stem cells. The protective activity of CBX3 was associated with reduced promoter CpG-methylation, decreased levels of repressive and increased levels of active histone marks. Moreover, the anti-silencing effect of CBX3 was locally restricted and when linked to tissue-specific promoters did not activate transcription in off target cells. Thus, CBX3 is a highly attractive element for sustained, tissue-specific and copy-number dependent transgene expression in vitro and in vivo.


Stem Cells and Development | 2012

Efficient Hematopoietic Redifferentiation of Induced Pluripotent Stem Cells Derived from Primitive Murine Bone Marrow Cells

Nils Pfaff; Nico Lachmann; Saskia Kohlscheen; Malte Sgodda; Marcos J. Araúzo-Bravo; Boris Greber; Wilfried August Kues; Silke Glage; Christopher Baum; Heiner Niemann; Axel Schambach; Tobias Cantz; Thomas Moritz

Heterogeneity among induced pluripotent stem cell (iPSC) lines with regard to their gene expression profile and differentiation potential has been described and at least partly linked to the tissue of origin. Here, we generated iPSCs from primitive [lineage negative (Lin(neg))] and nonadherent differentiated [lineage positive (Lin(pos))] bone marrow cells (BM-iPSC), and compared their differentiation potential to that of fibroblast-derived iPSCs (Fib-iPSC) and embryonic stem cells (ESC). In the undifferentiated state, individual iPSC clones but also ESCs proved remarkably similar when analyzed for alkaline phosphatase and SSEA-1 staining, endogenous expression of the pluripotency genes Nanog, Oct4, and Sox2, or global gene expression profiles. However, substantial differences between iPSC clones were observed after induction of differentiation, which became most obvious upon cytokine-mediated instruction toward the hematopoietic lineage. All 3 BM-iPSC lines derived from undifferentiated Lin(neg) cells yielded high proportions of cells expressing the hematopoietic differentiation marker CD41 and in 2 of these lines high proportions of CD41+/ CD45+ cells were detected. In contrast, little hematopoiesis-specific surface marker expression was detected in 4 Lin(pos) BM-iPSC and 3 Fib-iPSC lines. These results were corroborated by functional studies demonstrating robust colony outgrowth from hematopoietic progenitors in 2 of the Lin(neg) BM-iPSCs only. Thus, in conclusion, our data demonstrate efficient generation of iPSCs from primitive hematopoietic tissue as well as efficient hematopoietic redifferentiation for Lin(neg) BM-iPSC lines, thereby supporting the notion of an epigenetic memory in iPSCs.


Embo Molecular Medicine | 2015

Lost in translation: pluripotent stem cell‐derived hematopoiesis

Mania Ackermann; Steffi Liebhaber; Jan-Henning Klusmann; Nico Lachmann

Pluripotent stem cells (PSCs) such as embryonic stem cells or induced pluripotent stem cells represent a promising cell type to gain novel insights into human biology. Understanding the differentiation process of PSCs in vitro may allow for the identification of cell extrinsic/intrinsic factors, driving the specification process toward all cell types of the three germ layers, which may be similar to the human in vivo scenario. This would not only lay the ground for an improved understanding of human embryonic development but would also contribute toward the generation of novel cell types used in cell replacement therapies. In this line, especially the developmental process of mesodermal cells toward the hematopoietic lineage is of great interest. Therefore, this review highlights recent progress in the field of hematopoietic specification of pluripotent stem cell sources. In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells. While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC‐derived mature hematopoietic cells. Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B‐ and T‐cell lineage.

Collaboration


Dive into the Nico Lachmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adele Mucci

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce C. Trapnell

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Takuji Suzuki

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge