Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nico Papinutto is active.

Publication


Featured researches published by Nico Papinutto.


Annals of Neurology | 2014

Spinal Cord Gray Matter Atrophy Correlates with Multiple Sclerosis Disability

Regina Schlaeger; Nico Papinutto; Valentina Panara; Carolyn Bevan; Iryna Lobach; Monica Bucci; Eduardo Caverzasi; Jeffrey M. Gelfand; Ari J. Green; Kesshi M. Jordan; William A. Stern; H.-Christian von Büdingen; Emmanuelle Waubant; Alyssa H. Zhu; Douglas S. Goodin; Bruce Cree; Stephen L. Hauser; Roland G. Henry

In multiple sclerosis (MS), cerebral gray matter (GM) atrophy correlates more strongly than white matter (WM) atrophy with disability. The corresponding relationships in the spinal cord (SC) are unknown due to technical limitations in assessing SC GM atrophy. Using phase‐sensitive inversion recovery (PSIR) magnetic resonance imaging, we determined the association of the SC GM and SC WM areas with MS disability and disease type.


Archive | 2014

Spinal cord gray matter atrophy correlates with multiple sclerosis disability - eScholarship

Regina Schlaeger; Nico Papinutto; Panara; Carolyn Bevan; Lobach; Monica Bucci; Eduardo Caverzasi; Jeffrey M. Gelfand; Ari J. Green; Kesshi M. Jordan; William A. Stern; Hc Von Büdingen; Emmanuelle Waubant; Ah Zhu; Douglas S. Goodin; Bac Cree; Stephen L. Hauser; Roland G. Henry

In multiple sclerosis (MS), cerebral gray matter (GM) atrophy correlates more strongly than white matter (WM) atrophy with disability. The corresponding relationships in the spinal cord (SC) are unknown due to technical limitations in assessing SC GM atrophy. Using phase‐sensitive inversion recovery (PSIR) magnetic resonance imaging, we determined the association of the SC GM and SC WM areas with MS disability and disease type.


Annals of Neurology | 2016

Long-term evolution of multiple sclerosis disability in the treatment era.

Bruce Cree; Pierre-Antoine Gourraud; Jorge R. Oksenberg; Carolyn Bevan; Elizabeth Crabtree-Hartman; Jeffrey M. Gelfand; Douglas S. Goodin; Jennifer Graves; Ari J. Green; Ellen M. Mowry; Darin T. Okuda; Daniel Pelletier; H.-Christian von Büdingen; Scott S. Zamvil; Alisha Agrawal; Stacy J. Caillier; Caroline Ciocca; Refujia Gomez; Rachel Kanner; Robin Lincoln; Antoine Lizee; Pamela Qualley; Adam Santaniello; Leena Suleiman; Monica Bucci; Valentina Panara; Nico Papinutto; William A. Stern; Alyssa H. Zhu; Gary Cutter

To characterize the accrual of long‐term disability in a cohort of actively treated multiple sclerosis (MS) patients and to assess whether clinical and magnetic resonance imaging (MRI) data used in clinical trials have long‐term prognostic value.


PLOS ONE | 2014

Q-Ball of Inferior Fronto-Occipital Fasciculus and Beyond

Eduardo Caverzasi; Nico Papinutto; Bagrat Amirbekian; Mitchel S. Berger; Roland G. Henry

The inferior fronto-occipital fasciculus (IFOF) is historically described as the longest associative bundle in the human brain and it connects various parts of the occipital cortex, temporo-basal area and the superior parietal lobule to the frontal lobe through the external/extreme capsule complex. The exact functional role and the detailed anatomical definition of the IFOF are still under debate within the scientific community. In this study we present a fiber tracking dissection of the right and left IFOF by using a q-ball residual-bootstrap reconstruction of High-Angular Resolution Diffusion Imaging (HARDI) data sets in 20 healthy subjects. By defining a single seed region of interest on the coronal fractional anisotropy (FA) color map of each subject, we investigated all the pathways connecting the parietal, occipital and posterior temporal cortices to the frontal lobe through the external/extreme capsule. In line with recent post-mortem dissection studies we found more extended anterior-posterior association connections than the “classical” fronto-occipital representation of the IFOF. In particular the pathways we evidenced showed: a) diffuse projections in the frontal lobe, b) fronto-parietal lobes connections trough the external capsule in almost all the subjects and c) widespread connections in the posterior regions. Our study represents the first consistent in vivo demonstration across a large group of individuals of these novel anterior and posterior terminations of the IFOF detailed described only by post-mortem anatomical dissection. Furthermore our work establishes the feasibility of consistent in vivo mapping of this architecture with independent in vivo methodologies. In conclusion q-ball tractography dissection supports a more complex definition of IFOF, which includes several subcomponents likely underlying specific function.


JAMA Neurology | 2015

Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis

Regina Schlaeger; Nico Papinutto; Alyssa H. Zhu; Iryna Lobach; Carolyn Bevan; Monica Bucci; Antonella Castellano; Jeffrey M. Gelfand; Jennifer Graves; Ari J. Green; Kesshi M. Jordan; Anisha Keshavan; Valentina Panara; William A. Stern; H.-Christian von Büdingen; Emmanuelle Waubant; Douglas S. Goodin; Bruce Cree; Stephen L. Hauser; Roland G. Henry

IMPORTANCE In multiple sclerosis (MS), upper cervical cord gray matter (GM) atrophy correlates more strongly with disability than does brain or cord white matter (WM) atrophy. The corresponding relationships in the thoracic cord are unknown owing to technical difficulties in assessing GM and WM compartments by conventional magnetic resonance imaging techniques. OBJECTIVES To investigate the associations between MS disability and disease type with lower thoracic cord GM and WM areas using phase-sensitive inversion recovery magnetic resonance imaging at 3 T, as well as to compare these relationships with those obtained at upper cervical levels. DESIGN, SETTING, AND PARTICIPANTS Between July 2013 and March 2014, a total of 142 patients with MS (aged 25-75 years; 86 women) and 20 healthy control individuals were included in this cross-sectional observational study conducted at an academic university hospital. MAIN OUTCOMES AND MEASURES Total cord areas (TCAs), GM areas, and WM areas at the disc levels C2/C3, C3/C4, T8/9, and T9/10. Area differences between groups were assessed, with age and sex as covariates. RESULTS Patients with relapsing MS (RMS) had smaller thoracic cord GM areas than did age- and sex-matched control individuals (mean differences [coefficient of variation (COV)]: 0.98 mm2 [9.2%]; P = .003 at T8/T9 and 0.93 mm2 [8.0%]; P = .01 at T9/T10); however, there were no significant differences in either the WM area or TCA. Patients with progressive MS showed smaller GM areas (mean differences [COV]: 1.02 mm2 [10.6%]; P < .001 at T8/T9 and 1.37 mm2 [13.2%]; P < .001 at T9/T10) and TCAs (mean differences [COV]: 3.66 mm2 [9.0%]; P < .001 at T8/T9 and 3.04 mm2 [7.2%]; P = .004 at T9/T10) compared with patients with RMS. All measurements (GM, WM, and TCA) were inversely correlated with Expanded Disability Status Scale score. Thoracic cord GM areas were correlated with lower limb function. In multivariable models (which also included cord WM areas and T2 lesion number, brain WM volumes, brain T1 and fluid-attenuated inversion recovery lesion loads, age, sex, and disease duration), cervical cord GM areas had the strongest correlation with Expanded Disability Status Scale score followed by thoracic cord GM area and brain GM volume. CONCLUSIONS AND RELEVANCE Thoracic cord GM atrophy can be detected in vivo in the absence of WM atrophy in RMS. This atrophy is more pronounced in progressive MS than RMS and correlates with disability and lower limb function. Our results indicate that remarkable cord GM atrophy is present at multiple cervical and lower thoracic levels and, therefore, may reflect widespread cord GM degeneration.


Journal of Neurosurgery | 2016

Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas

Eduardo Caverzasi; Shawn L. Hervey-Jumper; Kesshi M. Jordan; Iryna Lobach; Jing Li; Valentina Panara; Caroline A. Racine; Vanitha Sankaranarayanan; Bagrat Amirbekian; Nico Papinutto; Mitchel S. Berger; Roland G. Henry

OBJECT Diffusion MRI has uniquely enabled in vivo delineation of white matter tracts, which has been applied to the segmentation of eloquent pathways for intraoperative mapping. The last decade has also seen the development from earlier diffusion tensor models to higher-order models, which take advantage of high angular resolution diffusion-weighted imaging (HARDI) techniques. However, these advanced methods have not been widely implemented for routine preoperative and intraoperative mapping. The authors report on the application of residual bootstrap q-ball fiber tracking for routine mapping of potentially functional language pathways, the development of a system for rating tract injury to evaluate the impact on clinically assessed language function, and initial results predicting long-term language deficits following glioma resection. METHODS The authors have developed methods for the segmentation of 8 putative language pathways including dorsal phonological pathways and ventral semantic streams using residual bootstrap q-ball fiber tracking. Furthermore, they have implemented clinically feasible preoperative acquisition and processing of HARDI data to delineate these pathways for neurosurgical application. They have also developed a rating scale based on the altered fiber tract density to estimate the degree of pathway injury, applying these ratings to a subset of 35 patients with pre- and postoperative fiber tracking. The relationships between specific pathways and clinical language deficits were assessed to determine which pathways are predictive of long-term language deficits following surgery. RESULTS This tracking methodology has been routinely implemented for preoperative mapping in patients with brain gliomas who have undergone awake brain tumor resection at the University of California, San Francisco (more than 300 patients to date). In this particular study the authors investigated the white matter structure status and language correlation in a subcohort of 35 subjects both pre- and postsurgery. The rating scales developed for fiber pathway damage were found to be highly reproducible and provided significant correlations with language performance. Preservation of the left arcuate fasciculus (AF) and the temporoparietal component of the superior longitudinal fasciculus (SLF-tp) was consistent in all patients without language deficits (p < 0.001) at the long-term follow-up. Furthermore, in patients with short-term language deficits, the AF and/or SLF-tp were affected, and damage to these 2 pathways was predictive of a long-term language deficit (p = 0.005). CONCLUSIONS The authors demonstrated the successful application of q-ball tracking in presurgical planning for language pathways in brain tumor patients and in assessing white matter tract integrity postoperatively to predict long-term language dysfunction. These initial results predicting long-term language deficits following tumor resection indicate that postoperative injury to dorsal language pathways may be prognostic for long-term clinical language deficits. Study results suggest the importance of dorsal stream tract preservation to reduce language deficits in patients undergoing glioma resection, as well as the potential prognostic value of assessing postoperative injury to dorsal language pathways to predict long-term clinical language deficits.


PLOS ONE | 2015

Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: A 2D phase sensitive inversion recovery imaging study

Nico Papinutto; Regina Schlaeger; Valentina Panara; Alyssa H. Zhu; Eduardo Caverzasi; William A. Stern; Stephen L. Hauser; Roland G. Henry

The source of inter-subject variability and the influence of age and gender on morphometric characteristics of the spinal cord, such as the total cross-sectional area (TCA), the gray matter (GM) and white matter (WM) areas, currently remain under investigation. Understanding the effect of covariates such as age, gender, brain volumes, and skull- and vertebra-derived metrics on cervical and thoracic spinal cord TCA and GM areas in healthy subjects would be fundamental for exploring compartment specific changes in neurological diseases affecting the spinal cord. Using Magnetic Resonance Imaging at 3T we investigated 32 healthy subjects using a 2D phase sensitive inversion recovery sequence and we measured TCA, GM and WM areas at 4 cervical and thoracic levels of the spinal cord. We assessed age and gender relationships of cord measures and explored associations between cord measures and a) brain volumes and b) skull- and vertebra-derived metrics. Age and gender had a significant effect on TCA, WM and GM areas (with women and elderly having smaller values than men and younger people respectively), but not on the GM area/TCA ratio. The total intracranial volume and C3 vertebra dimensions showed the highest correlations with cord measures. When used in multi-regression models, they reduced cord areas group variability by approximately a third. Age and gender influences on cord measures and normalization strategies here presented might be of use in the study of compartment specific changes in various neurological diseases affecting the spinal cord.


Physical Review B | 2002

Frustration-driven structural distortion in VOMoO 4

P. Carretta; Nico Papinutto; C. B. Azzoni; Maria Cristina Mozzati; E. Pavarini; S. Gonthier; P. Millet

Nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), magnetization measurements, and electronic structure calculations in


Brain | 2014

White matter involvement in sporadic Creutzfeldt-Jakob disease

Eduardo Caverzasi; Maria Luisa Mandelli; Stephen J. DeArmond; Christopher P. Hess; Paolo Vitali; Nico Papinutto; Abby Oehler; Bruce L. Miller; Irina V. Lobach; Stefano Bastianello; Michael D. Geschwind; Roland G. Henry

{\mathrm{VOMoO}}_{4}


Magnetic Resonance Imaging | 2013

Reproducibility and biases in high field brain diffusion MRI: An evaluation of acquisition and analysis variables

Nico Papinutto; Francesca Maule; Jorge Jovicich

are presented. It is found that

Collaboration


Dive into the Nico Papinutto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alyssa H. Zhu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Pelletier

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rohit Bakshi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge