Nico Sneeuw
University of Stuttgart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nico Sneeuw.
Journal of Hydrometeorology | 2014
Christof Lorenz; Harald Kunstmann; Balaji Devaraju; Mohammad J. Tourian; Nico Sneeuw; Johannes Riegger
AbstractThe performance of hydrological and hydrometeorological water-balance-based methods to estimate monthly runoff is analyzed. Such an analysis also allows for the examination of the closure of water budgets at different spatial (continental and catchment) and temporal (monthly, seasonal, and annual) scales. For this analysis, different combinations of gridded observations [Global Precipitation Climatology Centre (GPCC), Global Precipitation Climatology Project (GPCP), Climate Prediction Center (CPC), Climatic Research Unit (CRU), and University of Delaware (DEL)], atmospheric reanalysis models [Interim ECMWF Re-Analysis (ERA-Interim), Climate Forecast System Reanalysis (CFSR), and Modern-Era Retrospective Analysis for Research and Applications (MERRA)], partially model-based datasets [Global Land Surface Evaporation: The Amsterdam Methodology (GLEAM), Moderate Resolution Imaging Spectroradiometer (MODIS) Global Evapotranspiration Project (MOD16), and FLUXNET Multi-Tree Ensemble (FLUXNET MTE)], and G...
Journal of Geodesy | 2014
Basem Elsaka; Jean-Claude Raimondo; Phillip Brieden; Tilo Reubelt; Jürgen Kusche; Frank Flechtner; Siavash Iran Pour; Nico Sneeuw; Jürgen Müller
The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project “Concepts for future gravity field satellite missions” as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a “GRACE Follow-on” mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line “Bender” mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2–4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees
Surveys in Geophysics | 2014
Nico Sneeuw; Christof Lorenz; Balaji Devaraju; Mohammad J. Tourian; Johannes Riegger; Harald Kunstmann; András Bárdossy
Water Resources Research | 2016
Mohammad J. Tourian; A. Tarpanelli; Omid Elmi; T. Qin; L. Brocca; T. Moramarco; Nico Sneeuw
{<}50
Archive | 2008
Nico Sneeuw; Mohammad Sharifi; Wolfgang Keller
Journal of Hydrometeorology | 2012
Benjamin Fersch; Harald Kunstmann; András Bárdossy; Balaji Devaraju; Nico Sneeuw
<50), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular the severe restriction of heterodyne lasers on maximum range-rates, only the moderate Pendulum and the Bender-mission are beneficial options, of course in addition to GRACE and GRACE-FO. Furthermore, a Bender-type constellation would result in the most accurate gravity field solution by a factor of about 12 at long wavelengths (up to degree/order 40) and by a factor of about 200 at short wavelengths (up to degree/order 120) compared to the present GRACE solution. Finally, we suggest the Pendulum and the Bender missions as candidate mission configurations depending on the available budget and technological progress.
Archive | 2014
Frank Flechtner; Nico Sneeuw; Wolf-Dieter Schuh
Given the continuous decline in global runoff data availability over the past decades, alternative approaches for runoff determination are gaining importance. When aiming for global scale runoff at a sufficient temporal resolution and with homogeneous accuracy, the choice to use spaceborne sensors is only a logical step. In this respect, we take water storage changes from Gravity Recovery And Climate Explorer (grace) results and water level measurements from satellite altimetry, and present a comprehensive assessment of five different approaches for river runoff estimation: hydrological balance equation, hydro-meteorological balance equation, satellite altimetry with quantile function-based stage–discharge relationships, a rudimentary instantaneous runoff–precipitation relationship, and a runoff–storage relationship that takes time lag into account. As a common property, these approaches do not rely on hydrological modeling; they are either purely data driven or make additional use of atmospheric reanalyses. Further, these methods, except runoff–precipitation ratio, use geodetic observables as one of their inputs and, therefore, they are termed hydro-geodetic approaches. The runoff prediction skill of these approaches is validated against in situ runoff and compared to hydrological model predictions. Our results show that catchment-specific methods (altimetry and runoff–storage relationship) clearly outperform the global methods (hydrological and hydro-meteorological approaches) in the six study regions we considered. The global methods have the potential to provide runoff over all landmasses, which implies gauged and ungauged basins alike, but are still limited due to inconsistencies in the global hydrological and hydro-meteorological datasets that they use.
Journal of Geodesy | 2013
Matthias Weigelt; Nico Sneeuw; Ernst J. O. Schrama; Pieter Visser
Limitations of satellite radar altimetry for operational hydrology include its spatial and temporal sampling as well as measurement problems caused by local topography and heterogeneity of the reflecting surface. In this study, we develop an approach that eliminates most of these limitations to produce an approximately 3 day temporal resolution water level time series from the original typically (sub)monthly data sets for the Po River in detail, and for Congo, Mississippi, and Danube Rivers. We follow a geodetic approach by which, after estimating and removing intersatellite biases, all virtual stations of several satellite altimeters are connected hydraulically and statistically to produce water level time series at any location along the river. We test different data-selection strategies and validate our method against the extensive available in situ data over the Po River, resulting in an average correlation of 0.7, Root-Mean-Square Error of 0.8 m, bias of −0.4 m, and Nash-Sutcliffe Efficiency coefficient of 0.5. We validate the transferability of our method by applying it to the Congo, Mississippi, and Danube Rivers, which have very different geomorphological and climatic conditions. The methodology yields correlations above 0.75 and Nash-Sutcliffe coefficients of 0.84 (Congo), 0.34 (Mississippi), and 0.35 (Danube).
Journal of Geodesy | 2012
Lutz Roese-Koerner; Balaji Devaraju; Nico Sneeuw; Wolf-Dieter Schuh
We present a proof-of-concept of gravity field recovery from satellite-to-satellite tracking (sst) in formation flight (ff). Three orbit types will be investigated: grace-type sst, co-orbital ff on a 2:1 relative ellipse, and out-of-plane ff on a circular relative orbit. All formations have comparable orbit characteristics: near polar, near eccentric, and short baselines of typically 10 km length.
Water Resources Research | 2016
Bramha Dutt Vishwakarma; Balaji Devaraju; Nico Sneeuw
AbstractSince 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided gravity-derived observations of variations in the terrestrial water storage. Because of the lack of suitable direct observations of large-scale water storage changes, a validation of the GRACE observations remains difficult. An approach that allows the evaluation of terrestrial water storage variations from GRACE by a comparison with those derived from aerologic water budgets using the atmospheric moisture flux divergence is presented. In addition to reanalysis products from the European Centre for Medium-Range Weather Forecasts and the National Centers for Environmental Prediction, high-resolution regional atmospheric simulations were produced with the Weather Research and Forecast modeling system (WRF) and validated against globally gridded observational data of precipitation and 2-m temperature. The study encompasses six different climatic and hydrographic regions: the Amazon basin, the catchments of Lena and Yenisei, ...