Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nico Tjandra is active.

Publication


Featured researches published by Nico Tjandra.


Journal of Magnetic Resonance | 2003

The Xplor-NIH NMR molecular structure determination package

Charles D. Schwieters; John J. Kuszewski; Nico Tjandra; G. Marius Clore

We announce the availability of the Xplor-NIH software package for NMR biomolecular structure determination. This package consists of the pre-existing XPLOR program, along with many NMR-specific extensions developed at the NIH. In addition to many features which have been developed over the last 20 years, the Xplor-NIH package contains an interface with a new programmatic framework written in C++. This interface currently supports the general purpose scripting languages Python and TCL, enabling rapid development of new tools, such as new potential energy terms and new optimization methods. Support for these scripting languages also facilitates interaction with existing external programs for structure analysis, structure manipulation, visualization, and spectral analysis.


Cell | 2000

Structure of Bax: coregulation of dimer formation and intracellular localization.

Motoshi Suzuki; Richard J. Youle; Nico Tjandra

Apoptosis is stimulated by the insertion of Bax from the cytosol into mitochondrial membranes. The solution structure of Bax, including the putative transmembrane domain at the C terminus, was determined in order to understand the regulation of its subcellular location. Bax consists of 9 alpha helices where the assembly of helices alpha1 through alpha 8 resembles that of the apoptosis inhibitor, Bcl-x(L). The C-terminal alpha 9 helix occupies the hydrophobic pocket proposed previously to mediate heterodimer formation and bioactivity of opposing members of the Bcl-2 family. The Bax structure shows that the orientation of helix alpha 9 provides simultaneous control over its mitochondrial targeting and dimer formation.


Nature Structural & Molecular Biology | 1995

Solution structure of calcium-free calmodulin.

Hitoshi Kuboniwa; Nico Tjandra; Stephan Grzesiek; Hao Ren; Claude B. Klee; Ad Bax

The three-dimensional structure of calmodulin in the absence of Ca2+ has been determined by three- and four-dimensional heteronuclear NMR experiments, including ROE, isotope-filtering combined with reverse labelling, and measurement of more than 700 three-bond J-couplings. In analogy with the Ca2+-ligated state of this protein, it consists of two small globular domains separated by a flexible linker, with no stable, direct contacts between the two domains. In the absence of Ca2+, the four helices in each of the two globular domains form a highly twisted bundle, capped by a short anti-parallel β-sheet. This arrangement is qualitatively similar to that observed in the crystal structure of the Ca2+-free N-terminal domain of troponin C.


Nature | 2008

BAX activation is initiated at a novel interaction site

Evripidis Gavathiotis; Motoshi Suzuki; Marguerite L. Davis; Kenneth Pitter; Gregory H. Bird; Samuel G. Katz; Ho-Chou Tu; Hyungjin Kim; Emily H. Cheng; Nico Tjandra; Loren D. Walensky

BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed stabilized α-helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the human BIM-SAHB–BAX interaction is highlighted by point mutagenesis that disrupts functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis.


Journal of Biomolecular NMR | 1996

Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields

Nico Tjandra; Paul T. Wingfield; Stephen J. Stahl; Ad Bax

Summary15N NMR relaxation times in perdeuterated HIV-1 protease, complexed with the sub-nanomolar inhibitor DMP323, have been measured at 600 and 360 MHz 1H frequency. The relative magnitudes of the principal components of the inertia tensor, calculated from the X-ray coordinates of the protein-drug complex, are 1.0:0.85:0.44. The relation between the T1/T2 ratios observed for the individual backbone amides and their N-H orientation within the 3D structure of the protease dimer yields a rotational diffusion tensor oriented nearly collinear to the inertia tensor. The relative magnitudes of its principal components (1.00:1.11:1.42) are also in good agreement with hydrodynamic modeling results. The orientation and magnitude of the diffusion tensors derived from relaxation data obtained at 360 and 600 MHz are nearly identical. The anisotropic nature of the rotational diffusion has little influence on the order parameters derived from the 15N T1 and T2 relaxation times; however, if anisotropy is ignored, this can result in erroneous identification of either exchange broadening or internal motions on a nanosecond time scale. The average ratio of the T1 values measured at 360 and 600 MHz is 0.50±0.015, which is slightly larger than the value of 0.466 expected for an isotropic rigid rotor with τc = 10.7 ns. The average ratio of the T2 values measured at 360 and 600 MHz is 1.14±0.04, which is also slightly larger than the expected ratio of 1.11. This magnetic field dependence of the T1 and T2 relaxation times suggests that the spectral density contribution from fast internal motions is not negligible, and that the chemical shift anisotropy of peptide backbone amides, on average, is larger than the 160 ppm value commonly used in 15N relaxation studies of proteins.


Nature | 2004

Structural basis for redox regulation of Yap1 transcription factor localization.

Matthew J. Wood; Gisela Storz; Nico Tjandra

The ability of organisms to alter their gene expression patterns in response to environmental changes is essential for viability. A central regulator of the response to oxidative stress in Saccharomyces cerevisiae is the Yap1 transcription factor. Upon activation by increased levels of reactive oxygen species, Yap1 rapidly redistributes to the nucleus where it regulates the expression of up to 70 genes. Here we identify a redox-regulated domain of Yap1 and determine its high-resolution solution structure. In the active oxidized form, a nuclear export signal (NES) in the carboxy-terminal cysteine-rich domain is masked by disulphide-bond-mediated interactions with a conserved amino-terminal α-helix. Point mutations that weaken the hydrophobic interactions between the N-terminal α-helix and the C-terminal NES-containing domain abolished redox-regulated changes in subcellular localization of Yap1. Upon reduction of the disulphide bonds, Yap1 undergoes a change to an unstructured conformation that exposes the NES and allows redistribution to the cytoplasm. These results reveal the structural basis of redox-dependent Yap1 localization and provide a previously unknown mechanism of transcription factor regulation by reversible intramolecular disulphide bond formation.


Journal of Biomolecular NMR | 1997

High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium

Ad Bax; Nico Tjandra

A mixture of dihexanoyl phosphatidylcholine and dimyristoylphosphatidylcholine in water forms disc-shaped particles, often referred toas bicelles [Sanders and Schwonek (1992) Biochemistry, 31, 8898–8905].These adopt an ordered, liquid crystalline phase, which can be maintained atvery low concentrations of the bicelles (down to 3% w/v). At thisconcentration the spacing between individual bicelles, on average, exceeds300 Å. The bicelles are shown to have a negligible effect on therotational diffusion of ubiquitin as judged by the 15NT1ρ values of the backbone amides relative to those inisotropic aqueous solution. The protein exhibits a residual degree ofalignment which is proportional to the bicelle concentration, andapproximately collinear with ubiquitins rotational diffusion tensor. Thedegree of alignment obtained offers unique opportunities for studying theproteins structure and dynamics.


Journal of Biomolecular NMR | 2003

Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy.

Zhengrong Wu; Frank Delaglio; Nico Tjandra; Victor B. Zhurkin; Ad Bax

The solution structure of d(CGCGAATTCGCG)2 has been determined on the basis of an exceptionally large set of residual dipolar couplings. In addition to the heteronuclear 13C-1H and 15N-1H and qualitative homonuclear 1H-1H dipolar couplings, previously measured in bicelle medium, more than 300 quantitative 1H-1H and 22 31P-1H dipolar restraints were obtained in liquid crystalline Pf1 medium, and 22 31P chemical shift anisotropy restraints. High quality DNA structures can be obtained solely on the basis of these new restraints, and these structures are in close agreement with those calculated previously on the basis of 13C-1H and 15N-1H dipolar couplings. In the newly calculated structures, 31P-1H dipolar and 3JsubH3′Psub couplings and 31P CSA data restrain the phosphodiester backbone torsion angles. The final structure represents a quite regular B-form helix with a modest bending of ∼10°, which is essentially independent of whether or not electrostatic terms are used in the calculation. Combined, the number of homo- and heteronuclear dipolar couplings significantly exceeds the number of degrees of freedom in the system. Results indicate that the dipolar coupling data cannot be fit by a single structure, but are compatible with the presence of rapid equilibria between C2′-endo and C3′-endo deoxyribose puckers (sugar switching). The C2′-H2′/H2′′ dipolar couplings in B-form DNA are particularly sensitive to sugar pucker and yield the largest discrepancies when fit to a single structure. To resolve these discrepancies, we suggest a simplified dipolar coupling analysis that yields N/S equilibria for the ribose sugar puckers, which are in good agreement with previous analyses of NMR JHH couplings, with a population of the minor C3′-endo form higher for pyrimidines than for purines.


Nature | 2011

Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3

Zheng Zhou; Hanqiao Feng; Bing-Rui Zhou; Rodolfo Ghirlando; Kaifeng Hu; Adam Zwolak; Lisa M. Miller Jenkins; Hua Xiao; Nico Tjandra; Carl Wu; Yawen Bai

The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3–H4)2 heterotetramer and are required for the deposition of CenH3 at centromeres in vivo. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved amino terminus and a shorter α-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4–H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.


Journal of Biological Chemistry | 2005

Novel Structure of the N Terminus in Yeast Fis1 Correlates with a Specialized Function in Mitochondrial Fission

Motoshi Suzuki; Albert Neutzner; Nico Tjandra; Richard J. Youle

Mitochondrial fission is facilitated by a multiprotein complex assembled at the division site. The required components of the fission machinery in Saccharomyces cerevisiae include Dnm1, Fis1, and Mdv1. In the present study, we determined the protein structure of yeast Fis1 using NMR spectroscopy. Although the six α-helices, as well as their folding, in the yeast Fis1 structure are similar to those of the tetratricopeptide repeat (TPR) domains of the human Fis1 structure, the two structures differ in their N termini. The N-terminal tail of human Fis1 is flexible and unstructured, whereas a major segment of the longer N terminus of yeast Fis1 is fixed to the concave face formed by the six α-helices in the TPR domains. To investigate the role of the fixed N terminus, exogenous Fis1 was expressed in yeast lacking the endogenous protein. Expression of yeast Fis1 protein rescued mitochondrial fission in Δfis1 yeast only when the N-terminal TPR binding segment was left intact. The presence of this segment is also correlated to the recruitment of Mdv1 to mitochondria. The conformation of the N-terminal segment embedded in the TPR pocket indicates an intra-molecular regulation of Fis1 bioactivity. Although the TPR-like helix bundle of Fis1 mediates the interaction with Dnm1 and Mdv1, the N terminus of Fis1 is a prerequisite to recruit Mdv1 to facilitate mitochondrial fission.

Collaboration


Dive into the Nico Tjandra's collaboration.

Top Co-Authors

Avatar

Ad Bax

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kang Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Madeleine Strickland

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eva de Alba

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marie-Paule Strub

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James M. Gruschus

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Motoshi Suzuki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Youle

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles D. Schwieters

Center for Information Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge