Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nico Zinn is active.

Publication


Featured researches published by Nico Zinn.


Proteomics | 2010

De novo sequencing of peptides by MS/MS

Joerg Seidler; Nico Zinn; Martin E. Boehm; Wolf D. Lehmann

The current status of de novo sequencing of peptides by MS/MS is reviewed with focus on collision cell MS/MS spectra. The relation between peptide structure and observed fragment ion series is discussed and the exhaustive extraction of sequence information from CID spectra of protonated peptide ions is described. The partial redundancy of the extracted sequence information and a high mass accuracy are recognized as key parameters for dependable de novo sequencing by MS. In addition, the benefits of special techniques enhancing the generation of long uninterrupted fragment ion series for de novo peptide sequencing are highlighted. Among these are terminal 18O labeling, MSn of sodiated peptide ions, N‐terminal derivatization, the use of special proteases, and time‐delayed fragmentation. The emerging electron transfer dissociation technique and the recent progress of MALDI techniques for intact protein sequencing are covered. Finally, the integration of bioinformatic tools into peptide de novo sequencing is demonstrated.


Nature Chemical Biology | 2015

Catalytic in vivo protein knockdown by small-molecule PROTACs

Daniel P. Bondeson; Alina Mares; Ian Edward David Smith; Eunhwa Ko; Sebastien Andre Campos; Afjal H. Miah; Katie E Mulholland; Natasha Routly; Dennis L. Buckley; Jeffrey L. Gustafson; Nico Zinn; Paola Grandi; Satoko Shimamura; Giovanna Bergamini; Maria Faelth-Savitski; Marcus Bantscheff; Carly S. Cox; Deborah A. Gordon; Ryan R. Willard; John J Flanagan; Linda N. Casillas; Bartholomew J. Votta; Willem den Besten; Kristoffer Famm; Laurens Kruidenier; Paul S. Carter; John D. Harling; Ian Churcher; Craig M. Crews

The current predominant therapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the targets ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.


ACS Chemical Biology | 2011

Chemoproteomics-Based Design of Potent LRRK2-Selective Lead Compounds That Attenuate Parkinson’s Disease-Related Toxicity in Human Neurons

Nigel Ramsden; Jessica Perrin; Zhao Ren; Byoung Dae Lee; Nico Zinn; Valina L. Dawson; Danny Tam; Michael P. Bova; Manja Lang; Gerard Drewes; Marcus Bantscheff; Frederique Bard; Ted M. Dawson; Carsten Hopf

Leucine-rich repeat kinase-2 (LRRK2) mutations are the most important cause of familial Parkinsons disease, and non-selective inhibitors are protective in rodent disease models. Because of their poor potency and selectivity, the neuroprotective mechanism of these tool compounds has remained elusive so far, and it is still unknown whether selective LRRK2 inhibition can attenuate mutant LRRK2-dependent toxicity in human neurons. Here, we employ a chemoproteomics strategy to identify potent, selective, and metabolically stable LRRK2 inhibitors. We demonstrate that CZC-25146 prevents mutant LRRK2-induced injury of cultured rodent and human neurons with mid-nanomolar potency. These precise chemical probes further validate this emerging therapeutic strategy. They will enable more detailed studies of LRRK2-dependent signaling and pathogenesis and accelerate drug discovery.


Journal of Proteome Research | 2013

Measuring and managing ratio compression for accurate iTRAQ/TMT quantification.

Mikhail M. Savitski; Toby Mathieson; Nico Zinn; Gavain Sweetman; Carola Doce; Isabelle Becher; Fiona Pachl; Bernhard Kuster; Marcus Bantscheff

Isobaric mass tagging (e.g., TMT and iTRAQ) is a precise and sensitive multiplexed peptide/protein quantification technique in mass spectrometry. However, accurate quantification of complex proteomic samples is impaired by cofragmentation of peptides, leading to systematic underestimation of quantitative ratios. Label-free quantification strategies do not suffer from such an accuracy bias but cannot be multiplexed and are less precise. Here, we compared protein quantification results obtained with these methods for a chemoproteomic competition binding experiment and evaluated the utility of measures of spectrum purity in survey spectra for estimating the impact of cofragmentation on measured TMT-ratios. While applying stringent interference filters enables substantially more accurate TMT quantification, this came at the expense of 30%-60% fewer proteins quantified. We devised an algorithm that corrects experimental TMT ratios on the basis of determined peptide interference levels. The quantification accuracy achieved with this correction was comparable to that obtained with stringent spectrum filters but limited the loss in coverage to <10%. The generic applicability of the fold change correction algorithm was further demonstrated by spiking of chemoproteomics samples into excess amounts of E. coli tryptic digests.


Analytical Chemistry | 2011

Delayed fragmentation and optimized isolation width settings for improvement of protein identification and accuracy of isobaric mass tag quantification on Orbitrap-type mass spectrometers.

Mikhail M. Savitski; Gavain Sweetman; Manor Askenazi; Jarrod A. Marto; Manja Lang; Nico Zinn; Marcus Bantscheff

Fragmentation of multiple peptides in a single tandem mass scan impairs accuracy of isobaric mass tag based quantification. Consequently, practitioners aim at fragmenting peptide ions with the highest possible purity without compromising on sensitivity and coverage achieved in the experiment. Here we report the first systematic study optimizing delayed fragmentation options on Orbitrap instruments. We demonstrate that by delaying peptide fragmentation to occur closer to the apex of the chromatographic peak in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments cofragmentation is reduced by 2-fold and peptides are fragmented with 2.8-fold better signal-to-noise ratios. This results in significantly improved accuracy of isobaric mass tag quantification. Further, we measured cofragmentation dependence on isolation width. In comparison to Orbitrap XL instruments the reduced space charging in the Orbitrap Velos enables isolation widths as narrow as 1 Th without impairing coverage, thus substantially reducing cofragmentation. When delayed peptide fragmentation and narrow isolation width settings were both applied, cofragmentation-induced ratio compression could be reduced by 32% on a log2 scale under otherwise identical conditions.


Journal of Analytical Atomic Spectrometry | 2008

Protein labelling with mercury tags: fundamental studies on ovalbumin derivatised with p-hydroxymercuribenzoic acid (pHMB)

Daniel J. Kutscher; M. Estela del Castillo Busto; Nico Zinn; Alfredo Sanz-Medel; Jörg Bettmer

Protein labelling in combination with mass spectrometry is appointed as a modern approach for quantifying biopolymers, especially proteins. With respect to elemental mass spectrometry, specifically inductively coupled plasma-mass spectrometry (ICP-MS), protein labelling approaches are still scarce, although they offer many advantages, e.g. in terms of detection sensitivity. In this fundamental work, we present results on the labelling of ovalbumin with p-hydroxymercuribenzoic acid (pHMB). After optimising the derivatisation procedure, the characterisation of the labelled species is necessary, and thus, the use of molecular MS techniques like MALDI-, and ESI-MS is required. Finally, the detection capabilities of ICP-MS are evaluated on the labelled species. Important factors to consider are the reaction yield, the selectivity, and the stoichiometry of the bioconjugate. For instance, the stoichiometry of the bioconjugate is determined by comparative measurements using MALDI-, and ESI-MS. It can be demonstrated that the label/protein ratio is determined to be ∼3 : 1 by MALDI-MS, which is lower than the number of expected binding sites (ovalbumin has four free sulfhydryl groups from cysteines). In contrast to these findings, the use of ESI-Q-ToF-MS with its superior mass resolution indicates a stoichiometry of 4 : 1. However, the overall strategy given here on the example of ovalbumin labelling with pHMB might be a promising approach for protein quantification as it provides a significant improvement in terms of detection limits (1 fmol for ovalbumin) in comparison to the use of sulfur as naturally occurring elemental tag.


Journal of Proteome Research | 2009

Phosphorus-based absolutely quantified standard peptides for quantitative proteomics.

Nico Zinn; Bettina Hahn; Rüdiger Pipkorn; Dominik Schwarzer; Wolf D. Lehmann

An innovative method for the production of absolutely quantified peptide standards is described. These are named phosphorus-based absolutely quantified standard (PASTA) peptides. As the first step, synthetic phosphopeptides are calibrated via a hybrid LC-(ICP+ESI)-MS system. Quantification is achieved by ICP-MS detection of 31P, and identification is performed by ESI-MS. Generation of phosphopeptide standard solutions with this system is demonstrated to provide absolute concentrations with an accuracy better than 10%. The concept was extended to the production of peptide standards by subjecting a PASTA phosphopeptide to gentle and complete dephosphorylation to obtain the cognate PASTA peptide. It is demonstrated that both enzymatic hydrolysis by alkaline or antarctic phosphatase or chemical hydrolysis by hydrofluoric acid can be employed for this purpose. Further, the introduction of one or more stable isotope-labeled amino acids (preferably labeled by 13C, 15N) results in the production of a labeled PASTA peptide, which then can be employed as an internal standard for quantitative analysis by LC-ESI-MS. Using a 1:1 mixture of a stable isotope-labeled PASTA peptide/phosphopeptide pair as dual standard, a quantification between active and inactive recombinant MAP kinase p38alpha was performed by a combination of tryptic digestion and nanoLC-MS.


Analytical Chemistry | 2010

Recombinant Isotope Labeled and Selenium Quantified Proteins for Absolute Protein Quantification

Nico Zinn; Dominic Winter; Wolf D. Lehmann

A novel, widely applicable method for the production of absolutely quantified proteins is described, which can be used as internal standards for quantitative proteomic studies based on mass spectrometry. These standards are recombinant proteins containing an isotope label and selenomethionine. For recombinant protein expression, assembly of expression vectors fitted to cell-free protein synthesis was conducted using the gateway technology which offers fast access to a variety of genes via open reading frame libraries and an easy shuttling of genes between vectors. The proteins are generated by cell-free expression in a medium in which methionine is exchanged against selenomethionine and at least one amino acid is exchanged by a highly stable isotope labeled analogue. After protein synthesis and purification, selenium is used for absolute quantification by element mass spectrometry, while the heavy amino acids in the protein serve as reference in subsequent analyses by LC-ESI-MS or MALDI-MS. Accordingly, these standards are denominated RISQ (for recombinant isotope labeled and selenium quantified) proteins. In this study, a protein was generated containing Lys+6 ([(13)C(6)]-lysine) and Arg+10 ([(13)C(6),(15)N(4)]-arginine) so that each standard tryptic peptide contains a labeled amino acid. Apolipoprotein A1 was synthesized as RISQ protein, and its use as internal standard led to quantification of a reference material within the specified value. Owing to their cell-free expression, RISQ proteins do not contain posttranslational modifications. Thus, correct quantitative data by ESI- or MALDI-MS are restricted to quantifications based on peptides derived from unmodified regions of the analyte protein. Therefore, besides serving as internal standards, RISQ proteins stand out as new tools for quantitative analysis of covalent protein modifications.


Methods | 2012

Mass spectrometry approaches to monitor protein–drug interactions

Nico Zinn; Carsten Hopf; Gerard Drewes; Marcus Bantscheff

Recent advances in mass spectrometry-based approaches have enabled the investigation of drug-protein interactions in various ways including the direct detection of drug-target complexes, the examination of drug-induced changes in the target protein structure, and the monitoring of enzymatic target activity. Mass spectrometry-based proteomics methods also permit the unbiased analysis of changes in protein abundance and post-translational modifications induced by drug action. Finally, chemoproteomic affinity enrichment studies enable the deconvolution of drug targets under close to physiological conditions. This review provides an overview of current methods for the characterization of drug-target interactions by mass spectrometry and describes a protocol for chemoproteomic target binding studies using immobilized bioactive molecules.


Proteomics | 2011

One-source peptide/phosphopeptide standards for accurate phosphorylation degree determination

Bettina Hahn; Martin Böhm; Valentina Raia; Nico Zinn; Peter Möller; Ursula Klingmüller; Wolf D. Lehmann

Reversible protein phosphorylation is a key mediator for intracellular signal transduction. Here we report an innovative method for accurate, site‐specific protein phosphorylation degree determination by nanoLC‐ESI‐MS/MS. A stable isotope‐labeled pair of peptide/phosphopeptide standards with volumetrically defined molar ratio is used as reference, providing an internal standard for both the analyte peptide and the phosphopeptide. For the preparation of one‐source peptide/phosphopeptide standards, an aliquot of the labeled phosphopeptide standard is quantitatively dephosphorylated, yielding an equimolar solution of the peptide standard. Subsequently, the two solutions are mixed at a 1:1 or other volumetric ratio, which equals the molar ratio. This procedure assures a defined concentration ratio of both components that is independent from their absolute concentration. We demonstrate the applicability of the one‐source peptide/phosphopeptide standard method by determining the phosphorylation degree of the signalling proteins STAT5A/B and STAT6.

Collaboration


Dive into the Nico Zinn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettina Hahn

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Joerg Seidler

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge