Nicola Arriga
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicola Arriga.
Sensors | 2011
Manuela Balzarolo; Karen Anderson; Caroline J. Nichol; Micol Rossini; L. Vescovo; Nicola Arriga; Georg Wohlfahrt; Jean-Christophe Calvet; Arnaud Carrara; Sofia Cerasoli; Sergio Cogliati; Fabrice Daumard; Lars Eklundh; J.A. Elbers; Fatih Evrendilek; R.N. Handcock; Jörg Kaduk; Katja Klumpp; Bernard Longdoz; Giorgio Matteucci; Michele Meroni; Leonardo Montagnani; Jean-Marc Ourcival; Enrique P. Sánchez-Cañete; Jean-Yves Pontailler; Radosław Juszczak; Bob Scholes; M. Pilar Martín
This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903—“Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe” that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites.
Gcb Bioenergy | 2018
Miguel Portillo-Estrada; Terenzio Zenone; Nicola Arriga; R. Ceulemans
Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non‐negligible portion of the carbon fixed by primary producers, but long‐term ecosystem‐scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (Populus) short‐rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha−1 yr−1, which represented 0.63% of the net ecosystem exchange (NEE), resulting from −23.59 Mg C ha−1 yr−1 fixed as CO2 and 20.55 Mg C ha−1 yr−1 respired as CO2 from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO2 fixed. Based on annual ecosystem‐scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5–2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO2 and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.
Gcb Bioenergy | 2018
Alejandra Navarro; Miguel Portillo-Estrada; Nicola Arriga; Stefan P.P. Vanbeveren; R. Ceulemans
The productivity of short‐rotation coppice (SRC) plantations with poplar (Populus spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single‐stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow‐based canopy transpiration (Ec), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total Ec for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.
Agricultural and Forest Meteorology | 2012
Gerardo Fratini; Andreas Ibrom; Nicola Arriga; George Burba; Dario Papale
Agricultural and Forest Meteorology | 2015
Terenzio Zenone; Milan Fischer; Nicola Arriga; L.S. Broeckx; M.S. Verlinden; Stefan P.P. Vanbeveren; Donatella Zona; R. Ceulemans
Agricultural and Forest Meteorology | 2017
Nicola Arriga; Üllar Rannik; Marc Aubinet; Arnaud Carrara; Timo Vesala; Dario Papale
Archive | 2012
Gerardo Fratini; Andreas Ibrom; Nicola Arriga; George Burba; D. Papale
Agricultural and Forest Meteorology | 2012
Gerardo Fratini; Andreas Ibrom; Nicola Arriga; George Burba; Dario Papale
Archive | 2010
Nicola Arriga; Gerardo Fratini; Antonio Forgione; Michele Tomassucci; D. Papale
Archive | 2010
Gerardo Fratini; Nicola Arriga; Christopher R. Trotta; D. Papale