Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Binetti is active.

Publication


Featured researches published by Nicola Binetti.


Journal of Vision | 2012

Time-dilation and time-contraction in an anisochronous and anisometric visual scenery.

Nicola Binetti; Francesca Lecce; Fabrizio Doricchi

Several studies show that visual stimuli traveling at higher velocities are overestimated with respect to slower, or stationary, stimuli of equivalent physical duration. This effect-time dilation-relates more in general to several accounts highlighting a quantitative relationship between the amount of changes a stimulus is subject to and the perceived duration: faster stimuli, subject to a greater number of changes in space, lead to overestimated durations of displacement. In the present paper we provide evidence of a new illusory effect, in which the apparent duration of a sensory event is affected by the way a constant number of changes are delivered in time, or in time and space. Participants judged accelerating and decelerating sequences of stationary flickering stimuli (Experiments 1 and 3) and accelerating and decelerating horizontally drifting visual stimuli (Experiment 2) on the fronto-parallel plane. Acceleration and deceleration were achieved by irregular sequencing of events in time (anisochronous flicker rate) or irregular sequencing of events in time and space (anisochronous and/or anisometric drift). Despite being characterized by the same amounts of visual changes, accelerating and decelerating sequences lead to opposite duration biases (underestimation and overestimation errors, respectively). We refer to this effect in terms of ATI: Aniso-Time-Illusion. This bias was observed in both subsecond (760 ms) and suprasecond ranges (1900 ms). These data highlight how the spatio-temporal evolution of dynamic visual events, asides the overall quantity of changes they are subject to, affect the perceived amount of time they require to unfold.


Royal Society Open Science | 2016

Pupil dilation as an index of preferred mutual gaze duration.

Nicola Binetti; Charlotte Harrison; Antoine Coutrot; Alan Johnston; Isabelle Mareschal

Most animals look at each other to signal threat or interest. In humans, this social interaction is usually punctuated with brief periods of mutual eye contact. Deviations from this pattern of gazing behaviour generally make us feel uncomfortable and are a defining characteristic of clinical conditions such as autism or schizophrenia, yet it is unclear what constitutes normal eye contact. Here, we measured, across a wide range of ages, cultures and personality types, the period of direct gaze that feels comfortable and examined whether autonomic factors linked to arousal were indicative of peoples preferred amount of eye contact. Surprisingly, we find that preferred period of gaze duration is not dependent on fundamental characteristics such as gender, personality traits or attractiveness. However, we do find that subtle pupillary changes, indicative of physiological arousal, correlate with the amount of eye contact people find comfortable. Specifically, people preferring longer durations of eye contact display faster increases in pupil size when viewing another person than those preferring shorter durations. These results reveal that a persons preferred duration of eye contact is signalled by physiological indices (pupil dilation) beyond volitional control that may play a modulatory role in gaze behaviour.


PLOS ONE | 2014

The Effect of Self-Efficacy on Visual Discrimination Sensitivity

George Zacharopoulos; Nicola Binetti; Vincent Walsh; Ryota Kanai

Can subjective belief about ones own perceptual competence change ones perception? To address this question, we investigated the influence of self-efficacy on sensory discrimination in two low-level visual tasks: contrast and orientation discrimination. We utilised a pre-post manipulation approach whereby two experimental groups (high and low self-efficacy) and a control group made objective perceptual judgments on the contrast or the orientation of the visual stimuli. High and low self-efficacy were induced by the provision of fake social-comparative performance feedback and fictional research findings. Subsequently, the post-manipulation phase was performed to assess changes in visual discrimination thresholds as a function of the self-efficacy manipulations. The results showed that the high self-efficacy group demonstrated greater improvement in visual discrimination sensitivity compared to both the low self-efficacy and control groups. These findings suggest that subjective beliefs about ones own perceptual competence can affect low-level visual processing.


Neuropsychologia | 2010

Time in motion: effects of whole-body rotatory accelerations on timekeeping processes.

Nicola Binetti; Isabelle A. Siegler; Domenica Bueti; Fabrizio Doricchi

The ability of effectively representing time ensures the efficiency and accuracy of sensory and motor processing. It is well documented that in still observers, subjective time varies in response to variations of external sensory inputs. However, it is still poorly understood how inertial inputs, which enable coding of body displacements in space, affect timekeeping processes in a dynamic agent. Here, we investigated the effects of rotatory body accelerations on the reproduction of an acoustic isochronous pacing rhythm. In a first experiment, healthy participants performed a finger tapping task in which responses were either synchronized to the rhythm (Synchronization), or performed in absence of the rhythm following its withdrawal (Continuation). Both tasks were performed in presence and absence of sinusoidal acceleratory rotations along the vertical head-body axis. We found that the representation of the target frequency varied continuously as a function of periodic variations of vestibular-proprioceptive information. However, the effects on Synchronization and Continuation were opposite in directionality: increases in velocity were associated to increases in Continuation tapping rate (indicating a subjective shortening of the target interval), and decreases in Synchronization tapping rate. This was due to different temporal delays with which body motion affected tapping rate generation in these two conditions. A second control experiment, which lacked a representational component of time, confirmed that body displacements in Experiment 1 had indeed affected an internal timekeeper, and not motor responses triggered by its operation. A third control experiment, procedurally identical to Experiment 1 with the exception of an increased displacement frequency, allowed us to establish that Continuation tapping rate varied anticipatorily with respect to body motion, while Synchronization tapping rate varied with a delay in response to body movements. The observed consistent directionality in timing error, can be considered an adaptive response of internal timing mechanisms to body movements in space, where greater rates of displacement prompt accelerated timed responses.


PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES , 282 (1805) (2015) | 2015

Binding space and time through action

Nicola Binetti; N. Hagura; C. Fadipe; A. Tomassini; Vincent Walsh; Sven Bestmann

Space and time are intimately coupled dimensions in the human brain. Several lines of evidence suggest that space and time are processed by a shared analogue magnitude system. It has been proposed that actions are instrumental in establishing this shared magnitude system. Here we provide evidence in support of this hypothesis, by showing that the interaction between space and time is enhanced when magnitude information is acquired through action. Participants observed increases or decreases in the height of a visual bar (spatial magnitude) while judging whether a simultaneously presented sequence of acoustic tones had accelerated or decelerated (temporal magnitude). In one condition (Action), participants directly controlled the changes in bar height with a hand grip device, whereas in the other (No Action), changes in bar height were externally controlled but matched the spatial/temporal profile of the Action condition. The sign of changes in bar height biased the perceived rate of the tone sequences, where increases in bar height produced apparent increases in tone rate. This effect was amplified when the visual bar was actively controlled in the Action condition, and the strength of the interaction was scaled by the magnitude of the action. Subsequent experiments ruled out that this was simply explained by attentional factors, and additionally showed that a monotonic mapping is also required between grip force and bar height in order to bias the perception of the tones. These data provide support for an instrumental role of action in interfacing spatial and temporal quantities in the brain.


Scientific Reports | 2018

Selective binding of facial features reveals dynamic expression fragments

Charlotte Harrison; Nicola Binetti; Isabelle Mareschal; Alan Johnston

The temporal correspondence between two arbitrarily chosen pairs of alternating features can generally be reported for rates up to 3–4 Hz. This limit is however surpassed for specialised visual mechanisms that encode conjunctions of features. Here we show that this 3–4 Hz limit is exceeded for eye gaze and eyebrow pairing, but not for eye gaze and mouth pairing, suggesting combined eye and eyebrow motion constitutes a dynamic expression fragment; a building block of superordinate facial actions.


Perception | 2018

Personality Traits Do Not Predict How We Look at Faces

Charlotte Harrison; Nicola Binetti; Antoine Coutrot; Alan Johnston; Isabelle Mareschal

While personality has typically been considered to influence gaze behaviour, literature relating to the topic is mixed. Previously, we found no evidence of self-reported personality traits on preferred gaze duration between a participant and a person looking at them via a video. In this study, 77 of the original participants answered an in-depth follow-up survey containing a more comprehensive assessment of personality traits (Big Five Inventory) than was initially used, to check whether earlier findings were caused by the personality measure being too coarse. In addition to preferred mutual gaze duration, we also examined two other factors linked to personality traits: number of blinks and total fixation duration in the eye region of observed faces. No significant correlations were found between any of these measures and participant personality traits. We suggest that effects previously reported in the literature may stem from contextual differences or modulation of arousal.


Scientific Reports | 2017

Pupil response hazard rates predict perceived gaze durations

Nicola Binetti; Charlotte Harrison; Isabelle Mareschal; Alan Johnston

We investigated the mechanisms for evaluating perceived gaze-shift duration. Timing relies on the accumulation of endogenous physiological signals. Here we focused on arousal, measured through pupil dilation, as a candidate timing signal. Participants timed gaze-shifts performed by face stimuli in a Standard/Probe comparison task. Pupil responses were binned according to “Longer/Shorter” judgements in trials where Standard and Probe were identical. This ensured that pupil responses reflected endogenous arousal fluctuations opposed to differences in stimulus content. We found that pupil hazard rates predicted the classification of sub-second intervals (steeper dilation = “Longer” classifications). This shows that the accumulation of endogenous arousal signals informs gaze-shift timing judgements. We also found that participants relied exclusively on the 2nd stimulus to perform the classification, providing insights into timing strategies under conditions of maximum uncertainty. We observed no dissociation in pupil responses when timing equivalent neutral spatial displacements, indicating that a stimulus-dependent timer exploits arousal to time gaze-shifts.


I-perception | 2017

Temporal order judgements of dynamic gaze stimuli reveal a postdictive prioritisation of averted over direct shifts

Nicola Binetti; Charlotte Harrison; Isabelle Mareschal; Alan Johnston

We studied temporal order judgements (TOJs) of gaze shift behaviours and evaluated the impact of gaze direction (direct and averted gaze) and face context information (both eyes set within a single face or each eye within two adjacent hemifaces) on TOJ performance measures. Avatar faces initially gazed leftwards or rightwards (Starting Gaze Direction). This was followed by sequential and independent left and right eye gaze shifts with various amounts of stimulus onset asynchrony. Gaze shifts could be either Matching (both eyes end up pointing direct or averted) or Mismatching (one eye ends up pointing direct, the other averted). Matching shifts revealed an attentional cueing mechanism, where TOJs were biased in favour of the eye lying in the hemispace cued by the avatar’s Starting Gaze Direction. For example, the left eye was more likely to be judged as shifting first when the avatar initially gazed toward the left side of the screen. Mismatching shifts showed biased TOJs in favour of the eye performing the averted shift, but only in the context of two separate hemifaces that does not violate expectations of directional gaze shift congruency. This suggests a postdictive inferential strategy that prioritises eye movements based on the type of gaze shift, independently of where attention is initially allocated. Averted shifts are prioritised over direct, as these might signal the presence of behaviourally relevant information in the environment.


Frontiers in Psychology | 2017

Time-Order Errors in Duration Judgment Are Independent of Spatial Positioning

Charlotte Harrison; Nicola Binetti; Isabelle Mareschal; Alan Johnston

Time-order errors (TOEs) occur when the discriminability between two stimuli are affected by the order in which they are presented. While TOEs have been studied since the 1860s, it is unknown whether the spatial properties of a stimulus will affect this temporal phenomenon. In this experiment, we asked whether perceived duration, or duration discrimination, might be influenced by whether two intervals in a standard two-interval method of constants paradigm were spatially overlapping in visual short-term memory. Two circular sinusoidal gratings (one standard and the other a comparison) were shown sequentially and participants judged which of the two was presented for a longer duration. The test stimuli were either spatially overlapping (in different spatial frames) or separate. Stimulus order was randomized between trials. The standard stimulus lasted 600 ms, and the test stimulus had one of seven possible values (between 300 and 900 ms). There were no overall significant differences observed between spatially overlapping and separate stimuli. However, in trials where the standard stimulus was presented second, TOEs were greater, and participants were significantly less sensitive to differences in duration. TOEs were also greater in conditions involving a saccade. This suggests there is an intrinsic memory component to two interval tasks in that the information from the first interval has to be stored; this is more demanding when the standard is presented in the second interval. Overall, this study suggests that while temporal information may be encoded in some spatial form, it is not dependent on visual short-term memory.

Collaboration


Dive into the Nicola Binetti's collaboration.

Top Co-Authors

Avatar

Alan Johnston

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Mareschal

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Antoine Coutrot

University College London

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Doricchi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Domenica Bueti

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Walsh

University College London

View shared research outputs
Top Co-Authors

Avatar

Francesca Lecce

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge