Nicola Colonna
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicola Colonna.
Journal of Physics: Condensed Matter | 2017
Paolo Giannozzi; O. Andreussi; T. Brumme; O. Bunau; M. Buongiorno Nardelli; Matteo Calandra; Roberto Car; Carlo Cavazzoni; D. Ceresoli; Matteo Cococcioni; Nicola Colonna; I. Carnimeo; A. Dal Corso; S. de Gironcoli; P. Delugas; Robert A. DiStasio; Andrea Ferretti; A. Floris; Guido Fratesi; Giorgia Fugallo; Ralph Gebauer; Uwe Gerstmann; Feliciano Giustino; T. Gorni; Junteng Jia; M. Kawamura; Hsin-Yu Ko; Anton Kokalj; E. Küçükbenli; Michele Lazzeri
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Physical Review B | 2014
Nicola Colonna; Maria Hellgren; Stefano de Gironcoli
We have calculated the correlation energy of the homogeneous electron gas (HEG) and the dissociation energy curves of molecules with covalent bonds from a novel implementation of the adiabatic connection fluctuation dissipation (ACFD) expression including the exact exchange (EXX) kernel. The EXX kernel is defined from first order perturbation theory and used in the Dyson equation of time-dependent density functional theory. Within this approximation (RPAx), the correlation energies of the HEG are significantly improved with respect to the RPA up to densities of the order of
Physical Review B | 2016
Nicola Colonna; Maria Hellgren; Stefano de Gironcoli
r_s \approx 10
Physical Review B | 2011
Nicola Colonna; Gianni Profeta; A. Continenza; S. Massidda
. However, beyond this value, the RPAx response function exhibits an unphysical divergence and the approximation breaks down. Total energies of molecules at equilibrium are also highly accurate but we find a similar instability at stretched geometries. Staying within an exact first order approximation to the response function we use an alternative resummation of the higher order terms. This slight redefinition of RPAx fixes the instability in total energy calculations without compromising the overall accuracy of the approach.
Physical Review B | 2014
Ngoc Linh Nguyen; Nicola Colonna; Stefano de Gironcoli
In a recent paper [Phys. Rev. B 90, 125102 ( 2014)], we showed that the random phase approximation with exchange (RPAx) gives accurate total energies for a diverse set of systems including the high and low density regime of the homogeneous electron gas, the N-2 molecule, and the H-2 molecule at dissociation. In this paper, we present results for the van der Waals bonded Ar-2 and Kr-2 dimers and demonstrate that the RPAx gives superior dispersion forces as compared to the RPA. We then show that this improved description is crucial for the bond formation of the Mg-2 molecule. In addition, the RPAx performs better for the Be-2 dissociation curve at large nuclear separation but, similar to the RPA, fails around equilibrium due to the build up of a large repulsion hump. For the strongly correlated LiH molecule at dissociation we have also calculated the RPAx potential and find that the correlation peak at the bond midpoint is overestimated as compared to the RPA and the exact result. The step feature is missing and hence the delocalization error is comparable to the RPA. This is further illustrated by a smooth energy versus fractional charge curve and a poor description of the LiH dipole moment at dissociation.
Physical Review B | 2011
Nicola Colonna; Gianni Profeta; A. Continenza
Physical Review B | 2011
Nicola Colonna; Gianni Profeta; A. Continenza; S. Massidda
Journal of Chemical Theory and Computation | 2018
Nicola Colonna; Ngoc Linh Nguyen; Andrea Ferretti; Nicola Marzari
arXiv: Computational Physics | 2018
Nicola Colonna; Ngoch Linh Nguyen; Andrea Ferretti; Nicola Marzari
Physical Review X | 2018
Ngoc Linh Nguyen; Nicola Colonna; Andrea Ferretti; Nicola Marzari