Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Filippini is active.

Publication


Featured researches published by Nicola Filippini.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Correspondence of the brain's functional architecture during activation and rest.

Stephen M. Smith; Peter T. Fox; Karla L. Miller; David C. Glahn; P. Mickle Fox; Clare E. Mackay; Nicola Filippini; Kate E. Watkins; Roberto Toro; Angela R. Laird; Christian F. Beckmann

Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.”


Proceedings of the National Academy of Sciences of the United States of America | 2009

Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele.

Nicola Filippini; Bradley J. MacIntosh; Morgan Hough; Guy M. Goodwin; Giovanni B. Frisoni; Stephen M. Smith; Paul M. Matthews; Christian F. Beckmann; Clare E. Mackay

The APOE ε4 allele is a risk factor for late-life pathological changes that is also associated with anatomical and functional brain changes in middle-aged and elderly healthy subjects. We investigated structural and functional effects of the APOE polymorphism in 18 young healthy APOE ε4-carriers and 18 matched noncarriers (age range: 20–35 years). Brain activity was studied both at rest and during an encoding memory paradigm using blood oxygen level-dependent fMRI. Resting fMRI revealed increased “default mode network” (involving retrosplenial, medial temporal, and medial-prefrontal cortical areas) coactivation in ε4-carriers relative to noncarriers. The encoding task produced greater hippocampal activation in ε4-carriers relative to noncarriers. Neither result could be explained by differences in memory performance, brain morphology, or resting cerebral blood flow. The APOE ε4 allele modulates brain function decades before any clinical or neurophysiological expression of neurodegenerative processes.


NeuroImage | 2009

Group comparison of resting-state FMRI data using multi-subject ICA and dual regression

Christian F. Beckmann; Clare E. Mackay; Nicola Filippini; Stephen M. Smith

➁ Sensitivity to global amplitude differences: Signal ‘L’ is twice as strong in data set B compared to data set A. Back-projected spatial maps for ‘L’ are identical (i.e. no detection of a significant difference between data sets A and B; false negative detection). By comparison, the dual regression results (with time series normalisation) reflect differences in the global amplitude between the data sets (true positive detection). Dual Regression in context


NeuroImage | 2014

ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging

Ludovica Griffanti; Gholamreza Salimi-Khorshidi; Christian F. Beckmann; Edward J. Auerbach; Gwenaëlle Douaud; Claire E. Sexton; Enikő Zsoldos; Klaus P. Ebmeier; Nicola Filippini; Clare E. Mackay; Steen Moeller; Junqian Xu; Essa Yacoub; Giuseppe Baselli; Kamil Ugurbil; Karla L. Miller; Stephen M. Smith

The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIBs ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures was assessed using time series (amplitude and spectra), network matrix and spatial map analyses. For time series and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition, and, crucially, with higher spatial and temporal resolution. Moreover, we were able to perform higher dimensionality ICA decompositions with the accelerated data, which is very valuable for detailed network analyses.


Neurology | 2010

Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis

Nicola Filippini; Gwenaëlle Douaud; Clare E. Mackay; Steven Knight; Kevin Talbot; Martin Turner

Objective: While the hallmark of amyotrophic lateral sclerosis (ALS) is corticospinal tract in combination with lower motor neuron degeneration, the clinical involvement of both compartments is characteristically variable and the site of onset debated. We sought to establish whether there is a consistent signature of cerebral white matter abnormalities in heterogeneous ALS cases. Methods: In this observational study, diffusion tensor imaging was applied in a whole-brain analysis of 24 heterogeneous patients with ALS and well-matched healthy controls. Tract-based spatial statistics were used, with optimized voxel-based morphometry of T1 images to determine any associated gray matter involvement. Results: A consistent reduction in fractional anisotropy was demonstrated in the corpus callosum of the ALS group, extending rostrally and bilaterally to the region of the primary motor cortices, independent of the degree of clinical upper motor neuron involvement. Matched regional radial diffusivity increase supported the concept of anterograde degeneration of callosal fibers observed pathologically. Gray matter reductions were observed bilaterally in primary motor and supplementary motor regions, and also in the anterior cingulate and temporal lobe regions. A post hoc group comparison model incorporating significant values for fractional anisotropy, radial diffusivity, and gray matter was 92% sensitive, 88% specific, with an accuracy of 90%. Conclusion: Callosal involvement is a consistent feature of ALS, independent of clinical upper motor neuron involvement, and may reflect independent bilateral cortical involvement or interhemispheric spread of pathology. The predominantly rostral corticospinal tract involvement further supports the concept of independent cortical degeneration even in those patients with ALS with predominantly lower motor neuron involvement clinically.


The Journal of Neuroscience | 2013

The Organization of Dorsal Frontal Cortex in Humans and Macaques

Jerome Sallet; Rogier B. Mars; MaryAnn P. Noonan; Franz-Xaver Neubert; Saad Jbabdi; Jill X. O'Reilly; Nicola Filippini; Adam G. Thomas; Matthew F. S. Rushworth

The human dorsal frontal cortex has been associated with the most sophisticated aspects of cognition, including those that are thought to be especially refined in humans. Here we used diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI (fMRI) in humans and macaques to infer and compare the organization of dorsal frontal cortex in the two species. Using DW-MRI tractography-based parcellation, we identified 10 dorsal frontal regions lying between the human inferior frontal sulcus and cingulate cortex. Patterns of functional coupling between each area and the rest of the brain were then estimated with fMRI and compared with functional coupling patterns in macaques. Areas in human medial frontal cortex, including areas associated with high-level social cognitive processes such as theory of mind, showed a surprising degree of similarity in their functional coupling patterns with the frontal pole, medial prefrontal, and dorsal prefrontal convexity in the macaque. We failed to find evidence for “new” regions in human medial frontal cortex. On the lateral surface, comparison of functional coupling patterns suggested correspondences in anatomical organization distinct from those that are widely assumed. A human region sometimes referred to as lateral frontal pole more closely resembled area 46, rather than the frontal pole, of the macaque. Overall the pattern of results suggest important similarities in frontal cortex organization in humans and other primates, even in the case of regions thought to carry out uniquely human functions. The patterns of interspecies correspondences are not, however, always those that are widely assumed.


Nature Communications | 2013

Phantom pain is associated with preserved structure and function in the former hand area

Tamar R. Makin; Jan Scholz; Nicola Filippini; D Henderson Slater; Irene Tracey; Heidi Johansen-Berg

Phantom pain after arm amputation is widely believed to arise from maladaptive cortical reorganization, triggered by loss of sensory input. We instead propose that chronic phantom pain experience drives plasticity by maintaining local cortical representations and disrupting inter-regional connectivity. Here we show that, while loss of sensory input is generally characterized by structural and functional degeneration in the deprived sensorimotor cortex, the experience of persistent pain is associated with preserved structure and functional organization in the former hand area. Furthermore, consistent with the isolated nature of phantom experience, phantom pain is associated with reduced inter-regional functional connectivity in the primary sensorimotor cortex. We therefore propose that contrary to the maladaptive model, cortical plasticity associated with phantom pain is driven by powerful and long-lasting subjective sensory experience, such as triggered by nociceptive or top–down inputs. Our results prompt a revisiting of the link between phantom pain and brain organization.


NeuroImage | 2011

Differential effects of the APOE genotype on brain function across the lifespan.

Nicola Filippini; Klaus P. Ebmeier; Bradley J. MacIntosh; Aaron J. Trachtenberg; Giovanni B. Frisoni; Gordon Wilcock; Christian F. Beckmann; Steve M. Smith; Paul M. Matthews; Clare E. Mackay

Increasing age and carrying an APOE ε4 allele are well established risk factors for Alzheimers disease (AD). The earlier age of onset of AD observed in ε4-carriers may reflect an accelerated aging process. We recently reported that APOE genotype modulates brain function decades before the appearance of any cognitive or clinical symptoms. Here we test the hypothesis that APOE influences brain aging by comparing healthy ε4-carriers and non-carriers, using the same imaging protocol in distinct groups of younger and older healthy volunteers. A cross-sectional factorial design was used to examine the effects of age and APOE genotype, and their interaction, on fMRI activation during an encoding memory task. The younger (N=36; age range 20-35; 18 ε4-carriers) and older (35 middle-age/elderly; age range 50-78 years; 15 ε4-carriers) healthy volunteers taking part in the study were cognitively normal. We found a significant interaction between age and ε4-status in the hippocampi, frontal pole, subcortical nuclei, middle temporal gyri and cerebellum, such that aging was associated with decreased activity in e4-carriers and increased activity in non-carriers. Reduced cerebral blood flow was found in the older ε4-carriers relative to older non-carriers despite preserved grey matter volume. Overactivity of brain function in young ε4-carriers is disproportionately reduced with advancing age even before the onset of measurable memory impairment. The APOE genotype determines age-related changes in brain function that may reflect the increased vulnerability of ε4-carriers to late-life pathology or cognitive decline.


NeuroImage | 2012

The effects of APOE on the functional architecture of the resting brain

Aaron J. Trachtenberg; Nicola Filippini; Klaus P. Ebmeier; Steve M. Smith; Fredrik Karpe; Clare E. Mackay

There is a well-established association between APOE genotype and the risk of developing Alzheimers disease (AD). Relative to individuals with the common ε3/ε3 genotype, carriers of the ε4 allele are at increased risk of developing AD, while carriers of the ε2 allele appear to be protected against the disease. However, we recently reported that in a sample of cognitively healthy adults, both ε4 and ε2 carriers showed nearly identical changes in the pattern of fMRI activity during memory and non-memory tasks, relative to ε3 homozygotes. These findings suggest that the effects of APOE on brain function are not tightly linked to the effects of this gene on AD risk. Here we test the hypothesis that APOE has an intrinsic effect on the brains functional networks. Resting-state fMRI was used to compare the pattern of functional connectivity of a variety of resting-state networks between 77 cognitively healthy participants aged 32 to 55 with different APOE genotypes (23 ε2/ε3, 20 ε3/ε3, 26 ε3/ε4, and 8 ε4/ε4). Differences between genotype groups were found in two hippocampal networks, the auditory network, the left frontal-parietal network, and the lateral visual network. While there was considerable variety in the brain regions affected and the direction of change across networks, the main finding was that changes in functional connectivity were similar in ε4 and ε2 carriers, relative to ε3 homozygotes. APOE appears to have an intrinsic effect on the differentiation of functional networks in the brain. This effect is apparent in cognitively healthy adults and does not manifest in a manner reflective of the link between APOE and AD risk. Rather, the effects of APOE on brain function may relate to the role of this gene in neurodevelopment.


NeuroImage | 2009

Anatomically-distinct genetic associations of APOE epsilon4 allele load with regional cortical atrophy in Alzheimer's disease.

Nicola Filippini; Anil Rao; Sally Wetten; Rachel A. Gibson; Michael Borrie; Danilo Guzman; Andrew Kertesz; Inge Loy-English; Julie Williams; Thomas E. Nichols; Brandon Whitcher; Paul M. Matthews

APOE epsilon4 is the best-established genetic risk factor for sporadic Alzheimers disease (AD). However, while homozygotes show greater disease susceptibility and earlier age of onset than heterozygotes, they may not show faster rates of clinical progression. We hypothesize that there are differential APOE epsilon4 allele-load dependent influences on neuropathology across the brain. Our aim was to define the relationship between APOE epsilon4 allele load and regionally-specific brain cortical atrophy in Alzheimers Disease (AD). For this reason voxel-based morphometry (VBM) was performed using T1-weighted MR images from 83 AD patients, contrasting regional cortical grey matter by APOE epsilon4 load according to either dominant or genotypic models. Patients fulfilled NINCDS-ADRDA criteria and were genotyped for APOE epsilon4 (15 epsilon4/epsilon4, 39 epsilon4/- and 29-/-). We observed that grey matter volume (GMV) decreased additively with increasing allele load in the medial (MTL) and anterior temporal lobes bilaterally. By contrast, a 2 degree-of-freedom genotypic model suggested a dominant effect of the APOE epsilon4 allele in the left temporal lobe. Brain regions showing a significant APOE epsilon4 allele load effect on GMV in AD included only some of those typically described as having greatest amyloid plaque deposition and atrophy. Temporal regions appeared to show a dominant effect of APOE epsilon4 allele load instead of the additive effect previously strongly associated with age of onset. Regional variations with allele load may be related to different mechanisms for effects of APOE epsilon4 load on susceptibility and disease progression.

Collaboration


Dive into the Nicola Filippini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mika Kivimäki

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge