Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Foulds is active.

Publication


Featured researches published by Nicola Foulds.


Journal of Medical Genetics | 2009

Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome

B.W.M. van Bon; Mefford Hc; Björn Menten; David A. Koolen; Andrew J. Sharp; Willy M. Nillesen; Jeffrey W. Innis; T. de Ravel; Catherine Mercer; Marco Fichera; Helen Stewart; L E Connell; Katrin Õunap; Katherine Lachlan; B Castle; N. Van der Aa; C.M.A. van Ravenswaaij; Marcelo A. Nobrega; C Serra-Juhé; Ingrid Simonic; N. de Leeuw; Rolph Pfundt; Ernie M.H.F. Bongers; Carl Baker; P Finnemore; S Huang; Viv Maloney; John A. Crolla; M van Kalmthout; Maurizio Elia

Background: Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. Methods: To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3–BP4–BP5 region were included in this study to ascertain the clinical significance of duplications in this region. Results: The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3–BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3–BP4–BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. Conclusions: Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.


Journal of Medical Genetics | 2009

Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype

Tjitske Kleefstra; W.A.G. van Zelst-Stams; Willy M. Nillesen; Valérie Cormier-Daire; Gunnar Houge; Nicola Foulds; M.F. van Dooren; Marjolein H. Willemsen; Rolph Pfundt; Anne Turner; Meredith Wilson; Julie McGaughran; Anita Rauch; Martin Zenker; Margaret P Adam; M Innes; C Davies; A González-Meneses López; R Casalone; A Weber; Louise Brueton; A Delicado Navarro; M Palomares Bralo; Hanka Venselaar; S P A Stegmann; Helger G. Yntema; H. van Bokhoven; Han G. Brunner

Background: The 9q subtelomeric deletion syndrome (9qSTDS) is clinically characterised by moderate to severe mental retardation, childhood hypotonia and facial dysmorphisms. In addition, congenital heart defects, urogenital defects, epilepsy and behavioural problems are frequently observed. The syndrome can be either caused by a submicroscopic 9q34.3 deletion or by intragenic EHMT1 mutations leading to haploinsufficiency of the EHMT1 gene. So far it has not been established if and to what extent other genes in the 9q34.3 region contribute to the phenotype observed in deletion cases. This study reports the largest cohort of 9qSTDS cases so far. Methods and results: By a multiplex ligation dependent probe amplification (MLPA) approach, the authors identified and characterised 16 novel submicroscopic 9q deletions. Direct sequence analysis of the EHMT1 gene in 24 patients exhibiting the 9qSTD phenotype without such deletion identified six patients with an intragenic EHMT1 mutation. Five of these mutations predict a premature termination codon whereas one mutation gives rise to an amino acid substitution in a conserved domain of the protein. Conclusions: The data do not provide any evidence for phenotype–genotype correlations between size of the deletions or type of mutations and severity of clinical features. Therefore, the authors confirm the EHMT1 gene to be the major determinant of the 9qSTDS phenotype. Interestingly, five of six patients who had reached adulthood had developed severe psychiatric pathology, which may indicate that EHMT1 haploinsufficiency is associated with neurodegeneration in addition to neurodevelopmental defect.


Neurology | 2013

New NBIA subtype Genetic, clinical, pathologic, and radiographic features of MPAN

Penelope Hogarth; Allison Gregory; Michael C. Kruer; Lynn Sanford; Wendy Wagoner; Marvin R. Natowicz; Robert T. Egel; S. H. Subramony; Jennifer G. Goldman; Elizabeth Berry-Kravis; Nicola Foulds; Simon Hammans; Isabelle Desguerre; Diana Rodriguez; Callum Wilson; Andrea Diedrich; Sarah Green; Huong Tran; Lindsay Reese; Randall L. Woltjer; Susan J. Hayflick

Objective: To assess the frequency of mutations in C19orf12 in the greater neurodegeneration with brain iron accumulation (NBIA) population and further characterize the associated phenotype. Methods: Samples from 161 individuals with idiopathic NBIA were screened, and C19orf12 mutations were identified in 23 subjects. Direct examinations were completed on 8 of these individuals, and medical records were reviewed on all 23. Histochemical and immunohistochemical studies were performed on brain tissue from one deceased subject. Results: A variety of mutations were detected in this cohort, in addition to the Eastern European founder mutation described previously. The characteristic clinical features of mitochondrial membrane protein-associated neurodegeneration (MPAN) across all age groups include cognitive decline progressing to dementia, prominent neuropsychiatric abnormalities, and a motor neuronopathy. A distinctive pattern of brain iron accumulation is universal. Neuropathologic studies revealed neuronal loss, widespread iron deposits, and eosinophilic spheroidal structures in the basal ganglia. Lewy neurites were present in the globus pallidus, and Lewy bodies and neurites were widespread in other areas of the corpus striatum and midbrain structures. Conclusions: MPAN is caused by mutations in C19orf12 leading to NBIA and prominent, widespread Lewy body pathology. The clinical phenotype is recognizable and distinctive, and joins pantothenate kinase–associated neurodegeneration and PLA2G6-associated neurodegeneration as one of the major forms of NBIA.


Human Mutation | 2009

Comprehensive Clinical and Molecular Assessment of 32 Probands With Congenital Contractural Arachnodactyly: Report of 14 Novel Mutations and Review of the Literature

Bert Callewaert; Bart Loeys; Anna Ficcadenti; Sascha Vermeer; Magnus Landgren; Hester Y. Kroes; Yuval Yaron; Michael Pope; Nicola Foulds; Odile Boute; Francisco Galán; Helen Kingston; Nathalie Van der Aa; Iratxe Salcedo; Marielle Swinkels; Carina Wallgren-Pettersson; Orazio Gabrielli; Julie De Backer; Paul Coucke; Anne De Paepe

Beals‐Hecht syndrome or congenital contractural arachnodactyly (CCA) is a rare, autosomal dominant connective tissue disorder characterized by crumpled ears, arachnodactyly, contractures, and scoliosis. Recent reports also mention aortic root dilatation, a finding previously thought to differentiate the condition from Marfan syndrome (MFS). In many cases, the condition is caused by mutations in the fibrillin 2 gene (FBN2) with 26 mutations reported so far, all located in the middle region of the gene (exons 23–34). We directly sequenced the entire FBN2 gene in 32 probands clinically diagnosed with CCA. In 14 probands, we found 13 new and one previously described FBN2 mutation including a mutation in exon 17, expanding the region in which FBN2 mutations occur in CCA. Review of the literature showed that the phenotype of the FBN2 positive patients was comparable to all previously published FBN2‐positive patients. In our FBN2‐positive patients, cardiovascular involvement included mitral valve prolapse in two adult patients and aortic root enlargement in three patients. Whereas the dilatation regressed in one proband, it remained marked in a child proband (z‐score: 4.09) and his father (z‐score: 2.94), warranting echocardiographic follow‐up. We confirm paradoxical patellar laxity and report keratoconus, shoulder muscle hypoplasia, and pyeloureteral junction stenosis as new features. In addition, we illustrate large intrafamilial variability. Finally, the FBN2‐negative patients in this cohort were clinically indistinguishable from all published FBN2‐positive patients harboring a FBN2 mutation, suggesting locus heterogeneity. Hum Mutat 0, 1–8, 2008.


Nature Genetics | 2015

Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families.

Nadia A. Akawi; Jeremy McRae; Morad Ansari; Meena Balasubramanian; Moira Blyth; Angela F. Brady; Stephen Clayton; Trevor Cole; Charu Deshpande; Tomas Fitzgerald; Nicola Foulds; Richard Francis; George C. Gabriel; Sebastian S. Gerety; Judith A. Goodship; Emma Hobson; Wendy D Jones; Shelagh Joss; Daniel A. King; Nikolai T. Klena; Ajith Kumar; Melissa Lees; Chris Lelliott; Jenny Lord; Dominic McMullan; Mary O'Regan; Deborah Osio; Virginia Piombo; Elena Prigmore; Diana Rajan

Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes.


Orphanet Journal of Rare Diseases | 2014

EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations

Veerle Rc Eggens; Peter G. Barth; J.M.F. Niermeijer; Jonathan Berg; Niklas Darin; Abhijit Dixit; Joel Victor Fluss; Nicola Foulds; Darren Fowler; Tibor Hortobágyi; Ts Jacques; Mary D. King; Periklis Makrythanasis; Adrienn Máté; James A. R. Nicoll; Declan O’Rourke; Sue Price; Andrew N. Williams; Louise C. Wilson; Mohnish Suri; László Sztriha; Marit B Dijns-de Wissel; Mia van Meegen; Fred van Ruissen; Eleonora Aronica; Dirk Troost; Charles B. L. M. Majoie; Henk A. Marquering; Bwee Tien Poll-The; Frank Baas

BackgroundPontocerebellar hypoplasia (PCH) represents a group of neurodegenerative disorders with prenatal onset. Eight subtypes have been described thus far (PCH1-8) based on clinical and genetic features. Common characteristics include hypoplasia and atrophy of the cerebellum, variable pontine atrophy, and severe mental and motor impairments. PCH1 is distinctly characterized by the combination with degeneration of spinal motor neurons. Recently, mutations in the exosome component 3 gene (EXOSC3) have been identified in approximately half of the patients with PCH subtype 1.MethodsWe selected a cohort of 99 PCH patients (90 families) tested negative for mutations in the TSEN genes, RARS2, VRK1 and CASK. Patients in this cohort were referred with a tentative diagnose PCH type 1, 2, 4, 7 or unclassified PCH. Genetic analysis of the EXOSC3 gene was performed using Sanger sequencing. Clinical data, MR images and autopsy reports of patients positive for EXOSC3 mutations were analyzed.ResultsEXOSC3 mutations were found in twelve families with PCH subtype 1, and were not found in patients with other PCH subtypes. Identified mutations included a large deletion, nonsense and missense mutations. Examination of clinical data reveals a prolonged disease course in patients with a homozygous p.D132A mutation. MRI shows variable pontine hypoplasia in EXOSC3 mediated PCH, where the pons is largely preserved in patients with a homozygous p.D132A mutation, but attenuated in patients with other mutations. Additionally, bilateral cerebellar cysts were found in patients compound heterozygous for a p.D132A mutation and a nonsense allele.ConclusionsEXOSC3 mediated PCH shows clear genotype-phenotype correlations. A homozygous p.D132A mutation leads to PCH with possible survival into early puberty, and preservation of the pons. Compound heterozygosity for a p.D132A mutation and a nonsense or p.Y109N allele, a homozygous p.G31A mutation or a p.G135E mutation causes a more rapidly progressive course leading to death in infancy and attenuation of the ventral pons.Our findings imply a clear correlation between genetic mutation and clinical outcome in EXOSC3 mediated PCH, including variable involvement of the pons.


European Journal of Human Genetics | 2011

The 12q14 microdeletion syndrome: six new cases confirming the role of HMGA2 in growth.

Sally Ann Lynch; Nicola Foulds; Ann-Charlotte Thuresson; Amanda L. Collins; Göran Annerén; Bernt-Oves Hedberg; Carol A Delaney; James Iremonger; Caroline M Murray; John A. Crolla; Colm Costigan; Wayne Lam; David Fitzpatrick; Regina Regan; Sean Ennis; Freddie H. Sharkey

We report six patients with array deletions encompassing 12q14. Out of a total of 2538 array investigations carried out on children with developmental delay and dysmorphism in three diagnostic testing centres, six positive cases yielded a frequency of 1 in 423 for this deletion syndrome. The deleted region in each of the six cases overlaps significantly with previously reported cases with microdeletions of this region. The chromosomal range of the deletions extends from 12q13.3q15. In the current study, we report overlapping deletions of variable extent and size but primarily comprising chromosomal bands 12q13.3q14.1. Four of the six deletions were confirmed as de novo events. Two cases had deletions that included HMGA2, and both children had significant short stature. Neither case had osteopoikilosis despite both being deleted for LEMD3. Four cases had deletions that ended proximal to HMGA2 and all of these had much better growth. Five cases had congenital heart defects, including two with atrial septal defects, one each with pulmonary stenosis, sub-aortic stenosis and a patent ductus. Four cases had moderate delay, two had severe developmental delay and a further two had a diagnosis of autism. All six cases had significant speech delay with subtle facial dysmorphism.


American Journal of Medical Genetics Part A | 2009

Detection of 53 FBN1 mutations (41 novel and 12 recurrent) and genotype–phenotype correlations in 113 unrelated probands referred with Marfan syndrome, or a related fibrillinopathy

C.L.S. Turner; H. Emery; Amanda L. Collins; R.J. Howarth; C.M. Yearwood; E. Cross; P.J. Duncan; D.J. Bunyan; J.F. Harvey; Nicola Foulds

Mutations in the gene encoding fibrillin 1 (FBN1) cause Marfan syndrome (MFS), and related connective tissue disorders. The disease spectrum is wide and while many genotype–phenotype correlations have been reported, few have been consistent. In this study FBN1 was analyzed in 113 patients with MFS or Marfan‐like features. Fifty‐three mutations were identified in 52 individuals, 41 of which were novel. The mutations comprised 26 missense, 11 splice site, 7 frameshift, 6 nonsense, 1 in‐frame deletion, and 2 whole exon deletions. In common with previous studies, genotype–phenotype analysis showed that a FBN1 mutation was more likely to be identified in patients fulfilling Ghent criteria (P = 0.005) and in those who had ectopia lentis (EL) (P < 0.0001). Other previously reported genotype–phenotype correlations were also considered and a new inverse association between a mutation in exons 59–65, and EL emerged (P = 0.002).


JAMA Neurology | 2016

Analysis of Mutations in AARS2 in a Series of CSF1R-Negative Patients With Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia

David S. Lynch; Wei Jia Zhang; Rahul Lakshmanan; Justin A. Kinsella; Gunes Altiokka Uzun; Merih Karbay; Zeynep Tufekcioglu; Hasmet Hanagasi; Georgina Burke; Nicola Foulds; Simon Hammans; Anupam Bhattacharjee; Heather Wilson; Matthew Adams; Mark Walker; James A. R. Nicoll; Nick C. Fox; Indran Davagnanam; Rahul Phadke; Henry Houlden

Importance Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a frequent cause of adult-onset leukodystrophy known to be caused by autosomal dominant mutations in the CSF1R (colony-stimulating factor 1) gene. The discovery that CSF1R mutations cause ALSP led to more accurate prognosis and genetic counseling for these patients in addition to increased interest in microglia as a target in neurodegeneration. However, it has been known since the discovery of the CSF1R gene that there are patients with typical clinical and radiologic evidence of ALSP who do not carry pathogenic CSF1R mutations. These patients include those in whom the pathognomonic features of axonal spheroids and pigmented microglia have been found. Achieving a genetic diagnosis in these patients is important to our understanding of this disorder. Objective To genetically characterize a group of patients with typical features of ALSP who do not carry CSF1R mutations. Design, Settings, and Participants In this case series study, 5 patients from 4 families were identified with clinical, radiologic, or pathologic features of ALSP in whom CSF1R mutations had been excluded previously by sequencing. Data were collected between May 2014 and September 2015 and analyzed between September 2015 and February 2016. Main Outcomes and Measures Focused exome sequencing was used to identify candidate variants. Family studies, long-range polymerase chain reaction with cloning, and complementary DNA sequencing were used to confirm pathogenicity. Results Of these 5 patients, 4 were men (80%); mean age at onset of ALSP was 29 years (range, 15-44 years). Biallelic mutations in the alanyl-transfer (t)RNA synthetase 2 (AARS2) gene were found in all 5 patients. Frameshifting and splice site mutations were common, found in 4 of 5 patients, and sequencing of complementary DNA from affected patients confirmed that the variants were loss of function. All patients presented in adulthood with prominent cognitive, neuropsychiatric, and upper motor neuron signs. Magnetic resonance imaging in all patients demonstrated a symmetric leukoencephalopathy with punctate regions of restricted diffusion, typical of ALSP. In 1 patient, brain biopsy demonstrated axonal spheroids and pigmented microglia, which are the pathognomonic signs of ALSP. Conclusions and Relevance This work indicates that mutations in the tRNA synthetase AARS2 gene cause a recessive form of ALSP. The CSF1R and AARS2 proteins have different cellular functions but overlap in a final common pathway of neurodegeneration. This work points to novel targets for research and will lead to improved diagnostic rates in patients with adult-onset leukoencephalopathy.


American Journal of Medical Genetics Part A | 2008

Severe Marfan Syndrome Due to FBN1 Exon Deletions

Moira Blyth; Nicola Foulds; Claire Turner; David J. Bunyan

Marfan syndrome is an autosomal dominant condition, with manifestations mainly in the skeletal, ocular, and cardiovascular systems. The disorder is caused by mutations in fibrillin‐1 gene (FBN1). The majority of these are family‐specific point mutations, with a small number being predicted to cause exon‐skipping. To date, there have only been five reports of in‐frame exon deletions in FBN1, with the largest of these spanning three exons. Mosaicism is rarely recorded and has only been reported in the unaffected, or mildly affected, parents of probands. Here, we report on the clinical histories of two children with exon deletions in FBN1. Both have severe Marfan syndrome with significant signs in infancy. One patient has a deletion of exon 33, which has not previously been reported. The other has the largest reported deletion, which spans 37 exons, and also represents the first reported case of mosaicism in a patient with Marfan syndrome.

Collaboration


Dive into the Nicola Foulds's collaboration.

Top Co-Authors

Avatar

Simon Hammans

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar

John A. Crolla

Salisbury District Hospital

View shared research outputs
Top Co-Authors

Avatar

Justin H. Davies

University Hospital Southampton NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Moira Blyth

Chapel Allerton Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ammar Husami

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen Collins

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mary K. Kukolich

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Megan Landsverk

University of South Dakota

View shared research outputs
Researchain Logo
Decentralizing Knowledge