Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Horstmann is active.

Publication


Featured researches published by Nicola Horstmann.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus

Samuel A. Shelburne; David B. Keith; Nicola Horstmann; Paul Sumby; Michael T. Davenport; Edward A. Graviss; Richard G. Brennan; James M. Musser

Although central to pathogenesis, the molecular mechanisms used by microbes to regulate virulence factor production in specific environments during host–pathogen interaction are poorly defined. Several recent ex vivo and in vivo studies have found that the level of group A Streptococcus (GAS) virulence factor gene transcripts is temporally related to altered expression of genes encoding carbohydrate utilization proteins. These findings stimulated us to analyze the role in pathogenesis of catabolite control protein A (CcpA), a GAS ortholog of a key global regulator of carbohydrate metabolism in Bacillus subtilis. Inasmuch as the genomewide effects of CcpA in a human pathogen are unknown, we analyzed the transcriptome of a ΔccpA isogenic mutant strain grown in nutrient-rich medium. CcpA influences the transcript levels of many carbohydrate utilization genes and several well characterized GAS virulence factors, including the potent cytolysin streptolysin S. Compared with the wild-type parental strain, the ΔccpA isogenic mutant strain was significantly less virulent in a mouse model of invasive infection. Moreover, the isogenic mutant strain was significantly impaired in ability to colonize the mouse oropharynx. When grown in human saliva, a nutrient-limited environment, CcpA influenced production of several key virulence factors not influenced during growth in nutrient-rich medium. Purified recombinant CcpA bound to the promoter region of the gene encoding streptolysin S. Our discovery that GAS virulence and complex carbohydrate utilization are directly linked through CcpA provides enhanced understanding of a mechanism used by a Gram-positive pathogen to modulate virulence factor production in specific environments.


Molecular Microbiology | 2008

Molecular characterization of group A Streptococcus maltodextrin catabolism and its role in pharyngitis

Samuel A. Shelburne; David B. Keith; Michael T. Davenport; Nicola Horstmann; Richard G. Brennan; James M. Musser

We previously demonstrated that the cell‐surface lipoprotein MalE contributes to GAS maltose/maltodextrin utilization, but MalE inactivation does not completely abrogate GAS catabolism of maltose or maltotriose. Using a genome‐wide approach, we identified the GAS phosphotransferase system (PTS) responsible for non‐MalE maltose/maltotriose transport. This PTS is encoded by an open reading frame (M5005_spy1692) previously annotated as ptsG based on homology with the glucose PTS in Bacillus subtilis. Genetic inactivation of M5005_spy1692 significantly reduced transport rates of radiolabelled maltose and maltotriose, but not glucose, leading us to propose its reannotation as malT for maltose transporter. The ΔmalT, ΔmalE and ΔmalE:malT strains were significantly attenuated in their growth in human saliva and in their ability to catabolize α‐glucans digested by purified human salivary α‐amylase. Compared with wild‐type, the three isogenic mutant strains were significantly impaired in their ability to colonize the mouse oropharynx. Finally, we discovered that the transcript levels of maltodextrin utilization genes are regulated by competitive binding of the maltose repressor MalR and catabolite control protein A. These data provide novel insights into regulation of the GAS maltodextrin genes and their role in GAS host–pathogen interaction, thereby increasing the understanding of links between nutrient acquisition and virulence in common human pathogens.


Emerging Infectious Diseases | 2014

Streptococcus mitis strains causing severe clinical disease in cancer patients.

Samuel A. Shelburne; Pranoti Sahasrabhojane; Miguel Saldaña; Hui Yao; Xiaoping Su; Nicola Horstmann; Erika Thompson; Anthony R. Flores

The genetically diverse viridans group streptococci (VGS) are increasingly recognized as the cause of a variety of human diseases. We used a recently developed multilocus sequence analysis scheme to define the species of 118 unique VGS strains causing bacteremia in patients with cancer; Streptococcus mitis (68 patients) and S. oralis (22 patients) were the most frequently identified strains. Compared with patients infected with non–S. mitis strains, patients infected with S. mitis strains were more likely to have moderate or severe clinical disease (e.g., VGS shock syndrome). Combined with the sequence data, whole-genome analyses showed that S. mitis strains may more precisely be considered as >2 species. Furthermore, we found that multiple S. mitis strains induced disease in neutropenic mice in a dose-dependent fashion. Our data define the prominent clinical effect of the group of organisms currently classified as S. mitis and lay the groundwork for increased understanding of this understudied pathogen.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes

Anthony R. Flores; Jessica Galloway-Peña; Pranoti Sahasrabhojane; Miguel Saldaña; Hui Yao; Xiaoping Su; Nadim J. Ajami; Michael Holder; Joseph F. Petrosino; Erika Thompson; Immaculada Margarit Y Ros; Roberto Rosini; Guido Grandi; Nicola Horstmann; Sarah Teatero; Allison McGeer; Nahuel Fittipaldi; Rino Rappuoli; Carol J. Baker; Samuel A. Shelburne

Significance Serotype V group B Streptococcus (GBS) infection rates in humans have steadily increased during the past several decades. We determined that 92% of bloodstream infections caused by serotype V GBS in Houston and Toronto are caused by genetically related strains called sequence type (ST) 1. Whole-genome analysis of 202 serotype V ST-1 strains revealed the molecular relationship among these strains and that they are closely related to a bovine strain. Moreover, we found that a subset of GBS genes is under selective evolutionary pressure, indicating that proteins produced by these genes likely contribute to GBS host–pathogen interaction. These data will assist in understanding how bacteria adapt to cause disease in humans, thereby potentially informing new preventive and therapeutic strategies. The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.


PLOS Pathogens | 2011

Distinct single amino acid replacements in the control of virulence regulator protein differentially impact streptococcal pathogenesis.

Nicola Horstmann; Pranoti Sahasrabhojane; Bryce Suber; Muthiah Kumaraswami; Randall J. Olsen; Anthony R. Flores; James M. Musser; Richard G. Brennan; Samuel A. Shelburne

Sequencing of invasive strains of group A streptococci (GAS) has revealed a diverse array of single nucleotide polymorphisms in the gene encoding the control of virulence regulator (CovR) protein. However, there is limited information regarding the molecular mechanisms by which CovR single amino acid replacements impact GAS pathogenesis. The crystal structure of the CovR C-terminal DNA-binding domain was determined to 1.50 Å resolution and revealed a three-stranded β-sheet followed by a winged helix-turn-helix DNA binding motif. Modeling of the CovR protein-DNA complex indicated that CovR single amino acid replacements observed in clinical GAS isolates could directly alter protein-DNA interaction and impact protein structure. Isoallelic GAS strains that varied by a single amino acid replacement in the CovR DNA binding domain had significantly different transcriptomes compared to wild-type and to each other. Similarly, distinct recombinant CovR variants had differential binding affinity for DNA from the promoter regions of several virulence factor-encoding genes. Finally, mice that were challenged with GAS CovR isoallelic strains had significantly different survival times, which correlated with the transcriptome and protein-DNA binding studies. Taken together, these data provide structural and functional insights into the critical and distinct effects of variation in the CovR protein on GAS pathogenesis.


PLOS Pathogens | 2014

Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis

Nicola Horstmann; Miguel Saldaña; Pranoti Sahasrabhojane; Hui Yao; Xiaoping Su; Erika Thompson; Antonius Koller; Samuel A. Shelburne

Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that CovR is phosphorylated in vivo and elucidate how the complex interplay between CovR D53 activating phosphorylation, T65 inhibiting phosphorylation, and auto-regulation impacts streptococcal host-pathogen interaction.


Nucleic Acids Research | 2012

Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract

Nicola Horstmann; Jillian Orans; Poul Valentin-Hansen; Samuel A. Shelburne; Richard G. Brennan

Hfq is a post-transcriptional regulator that plays a key role in bacterial gene expression by binding AU-rich sequences and A-tracts to facilitate the annealing of sRNAs to target mRNAs and to affect RNA stability. To understand how Hfq from the Gram-positive bacterium Staphylococcus aureus (Sa) binds A-tract RNA, we determined the crystal structure of an Sa Hfq–adenine oligoribonucleotide complex. The structure reveals a bipartite RNA-binding motif on the distal face that is composed of a purine nucleotide-specificity site (R-site) and a non-discriminating linker site (L-site). The (R–L)-binding motif, which is also utilized by Bacillus subtilis Hfq to bind (AG)3A, differs from the (A–R–N) tripartite poly(A) RNA-binding motif of Escherichia coli Hfq whereby the Sa Hfq R-site strongly prefers adenosine, is more aromatic and permits deeper insertion of the adenine ring. R-site adenine-stacking residue Phe30, which is conserved among Gram-positive bacterial Hfqs, and an altered conformation about β3 and β4 eliminate the adenosine-specificity site (A-site) and create the L-site. Binding studies show that Sa Hfq binds (AU)3A ≈ (AG)3A ≥ (AC)3A > (AA)3A and L-site residue Lys33 plays a significant role. The (R–L) motif is likely utilized by Hfqs from most Gram-positive bacteria to bind alternating (A–N)n RNA.


Molecular Microbiology | 2015

Regulatory rewiring confers serotype-specific hyper-virulence in the human pathogen group A Streptococcus

Eric W. Miller; Jessica L. Danger; Anupama B. Ramalinga; Nicola Horstmann; Samuel A. Shelburne; Paul Sumby

Phenotypic heterogeneity is commonly observed between isolates of a given pathogen. Epidemiological analyses have identified that some serotypes of the group A Streptococcus (GAS) are non‐randomly associated with particular disease manifestations. Here, we present evidence that a contributing factor to the association of serotype M3 GAS isolates with severe invasive infections is the presence of a null mutant allele for the orphan kinase RocA. Through use of RNAseq analysis, we identified that the natural rocA mutation present within M3 isolates leads to the enhanced expression of more than a dozen immunomodulatory virulence factors, enhancing phenotypes such as hemolysis and NAD+ hydrolysis. Consequently, an M3 GAS isolate survived human phagocytic killing at a level 13‐fold higher than a rocA complemented derivative, and was significantly more virulent in a murine bacteremia model of infection. Finally, we identified that RocA functions through the CovR/S two‐component system as levels of phosphorylated CovR increase in the presence of functional RocA, and RocA has no regulatory activity following covR or covS mutation. Our data are consistent with RocA interfacing with the CovR/S two‐component system, and that the absence of this activity in M3 GAS potentiates the severity of invasive infections caused by isolates of this serotype.


Infection and Immunity | 2015

Characterization of the Effect of the Histidine Kinase CovS on Response Regulator Phosphorylation in Group A Streptococcus

Nicola Horstmann; Pranoti Sahasrabhojane; Miguel Saldaña; Nadim J. Ajami; Anthony R. Flores; Paul Sumby; Chang Gong Liu; Hui Yao; Xiaoping Su; Erika Thompson; Samuel A. Shelburne

ABSTRACT Two-component gene regulatory systems (TCSs) are a major mechanism by which bacteria respond to environmental stimuli and thus are critical to infectivity. For example, the control of virulence regulator/sensor kinase (CovRS) TCS is central to the virulence of the major human pathogen group A Streptococcus (GAS). Here, we used a combination of quantitative in vivo phosphorylation assays, isoallelic strains that varied by only a single amino acid in CovS, and transcriptome analyses to characterize the impact of CovS on CovR phosphorylation and GAS global gene expression. We discovered that CovS primarily serves to phosphorylate CovR, thereby resulting in the repression of virulence factor-encoding genes. However, a GAS strain selectively deficient in CovS phosphatase activity had a distinct transcriptome relative to that of its parental strain, indicating that both CovS kinase and phosphatase activities influence the CovR phosphorylation status. Surprisingly, compared to a serotype M3 strain, serotype M1 GAS strains had high levels of phosphorylated CovR, low transcript levels of CovR-repressed genes, and strikingly different responses to environmental cues. Moreover, the inactivation of CovS in the serotype M1 background resulted in a greater decrease in phosphorylated CovR levels and a greater increase in the transcript levels of CovR-repressed genes than did CovS inactivation in a serotype M3 strain. These data clarify the influence of CovS on the CovR phosphorylation status and provide insight into why serotype M1 GAS strains have high rates of spontaneous mutations in covS during invasive GAS infection, thus providing a link between TCS molecular function and the epidemiology of deadly bacterial infections.


Journal of Cell Science | 2010

Xenopus Kazrin interacts with ARVCF-catenin, spectrin and p190B RhoGAP, and modulates RhoA activity and epithelial integrity

Kyucheol Cho; Travis G. Vaught; Hong Ji; Dongmin Gu; Catherine Papasakelariou-Yared; Nicola Horstmann; Jean Marie Jennings; Moonsup Lee; Lisa M. Sevilla; Malgorzata Kloc; Albert B. Reynolds; Fiona M. Watt; Richard G. Brennan; Andrew P. Kowalczyk; Pierre D. McCrea

In common with other p120-catenin subfamily members, Xenopus ARVCF (xARVCF) binds cadherin cytoplasmic domains to enhance cadherin metabolic stability or, when dissociated, modulates Rho-family GTPases. We report here that xARVCF binds and is stabilized by Xenopus KazrinA (xKazrinA), a widely expressed conserved protein that bears little homology to established protein families, and which is known to influence keratinocyte proliferation and differentiation and cytoskeletal activity. Although we found that xKazrinA binds directly to xARVCF, we did not resolve xKazrinA within a larger ternary complex with cadherin, nor did it co-precipitate with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin, suggesting a potential means by which xKazrinA localizes to cell–cell borders. This was supported by the resolution of a ternary biochemical complex of xARVCF–xKazrinA–xβ2-spectrin and, in vivo, by the finding that ectodermal shedding followed depletion of xKazrin in Xenopus embryos, a phenotype partially rescued with exogenous xARVCF. Cell shedding appeared to be the consequence of RhoA activation, and thereby altered actin organization and cadherin function. Indeed, we also revealed that xKazrinA binds p190B RhoGAP, which was likewise capable of rescuing Kazrin depletion. Finally, xKazrinA was found to associate with δ-catenins and p0071-catenins but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin subfamily. Taken together, our study supports the essential role of Kazrin in development, and reveals the biochemical and functional association of KazrinA with ARVCF-catenin, spectrin and p190B RhoGAP.

Collaboration


Dive into the Nicola Horstmann's collaboration.

Top Co-Authors

Avatar

Samuel A. Shelburne

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Musser

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Pranoti Sahasrabhojane

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hui Yao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Miguel Saldaña

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Sumby

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiaoping Su

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Flores

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge