Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola J. Nadeau is active.

Publication


Featured researches published by Nicola J. Nadeau.


Nature | 2012

Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

Kanchon K. Dasmahapatra; James R. Walters; Adriana D. Briscoe; John W. Davey; Annabel Whibley; Nicola J. Nadeau; Aleksey V. Zimin; Daniel S.T. Hughes; Laura Ferguson; Simon H. Martin; Camilo Salazar; James J. Lewis; Sebastian Adler; Seung-Joon Ahn; Dean A. Baker; Simon W. Baxter; Nicola Chamberlain; Ritika Chauhan; Brian A. Counterman; Tamas Dalmay; Lawrence E. Gilbert; Karl H.J. Gordon; David G. Heckel; Heather M. Hines; Katharina Hoff; Peter W. H. Holland; Emmanuelle Jacquin-Joly; Francis M. Jiggins; Robert T. Jones; Durrell D. Kapan

The evolutionary importance of hybridization and introgression has long been debated. Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation. We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.


Philosophical Transactions of the Royal Society B | 2012

Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing

Nicola J. Nadeau; Annabel Whibley; Robert T. Jones; John W. Davey; Kanchon K. Dasmahapatra; Simon W. Baxter; Michael A. Quail; Mathieu Joron; Richard H. ffrench-Constant; Mark Blaxter; James Mallet; Chris D. Jiggins

Heliconius butterflies represent a recent radiation of species, in which wing pattern divergence has been implicated in speciation. Several loci that control wing pattern phenotypes have been mapped and two were identified through sequencing. These same gene regions play a role in adaptation across the whole Heliconius radiation. Previous studies of population genetic patterns at these regions have sequenced small amplicons. Here, we use targeted next-generation sequence capture to survey patterns of divergence across these entire regions in divergent geographical races and species of Heliconius. This technique was successful both within and between species for obtaining high coverage of almost all coding regions and sufficient coverage of non-coding regions to perform population genetic analyses. We find major peaks of elevated population differentiation between races across hybrid zones, which indicate regions under strong divergent selection. These ‘islands’ of divergence appear to be more extensive between closely related species, but there is less clear evidence for such islands between more distantly related species at two further points along the ‘speciation continuum’. We also sequence fosmid clones across these regions in different Heliconius melpomene races. We find no major structural rearrangements but many relatively large (greater than 1 kb) insertion/deletion events (including gain/loss of transposable elements) that are variable between races.


Trends in Genetics | 2010

A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations

Nicola J. Nadeau; Chris D. Jiggins

Studies of the genetic basis of adaptive changes in natural populations are now addressing questions that date back to the beginning of evolutionary biology, such as whether evolution proceeds in a gradual or discontinuous manner, and whether convergent evolution involves convergent genetic changes. Studies that combine quantitative genetics and population genomics provide a powerful tool for identifying genes controlling recent adaptive change. Accumulating evidence shows that single loci, and in some cases single mutations, often have major effects on phenotype. This implies that discontinuous evolution, with rapid changes in phenotype, could occur frequently in natural populations. Furthermore, convergent evolution commonly involves the same genes. This implies a surprising predictability underlying the genetic basis of evolutionary changes. Nonetheless, most studies of recent evolution involve the loss of traits, and we still understand little of the genetic changes needed in the origin of novel traits.


Molecular Ecology | 2013

Genome‐wide patterns of divergence and gene flow across a butterfly radiation

Nicola J. Nadeau; Simon H. Martin; Krzysztof M. Kozak; Camilo Salazar; Kanchon K. Dasmahapatra; John W. Davey; Simon W. Baxter; Mark Blaxter; James Mallet; Chris D. Jiggins

The Heliconius butterflies are a diverse recent radiation comprising multiple levels of divergence with ongoing gene flow between species. The recently sequenced genome of Heliconius melpomene allowed us to investigate the genomic evolution of this group using dense RAD marker sequencing. Phylogenetic analysis of 54 individuals robustly supported reciprocal monophyly of H. melpomene and Heliconius cydno and refuted previous phylogenetic hypotheses that H. melpomene may be paraphylectic with respect to H. cydno. Heliconius timareta also formed a monophyletic clade closely related but distinct from H. cydno with Heliconius heurippa falling within this clade. We find evidence for genetic admixture between sympatric populations of the sister clades H. melpomene and H. cydno/timareta, particularly between H. cydno and H. melpomene from Central America and between H. timareta and H. melpomene from the eastern slopes of the Andes. Between races, divergence is primarily explained by isolation by distance and there is no detectable genetic population structure between parapatric races, suggesting that hybrid zones between races are not zones of secondary contact. Our results also support previous findings that colour pattern loci are shared between populations and species with similar colour pattern elements. Furthermore, this pattern is almost unique to these genomic regions, with only a very small number of other loci showing significant similarity between populations and species with similar colour patterns.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand

Arnaud Martin; Riccardo Papa; Nicola J. Nadeau; Ryan I. Hill; Brian A. Counterman; Georg Halder; Chris D. Jiggins; Marcus R. Kronforst; Anthony D. Long; W. Owen McMillan; Robert D. Reed

Although animals display a rich variety of shapes and patterns, the genetic changes that explain how complex forms arise are still unclear. Here we take advantage of the extensive diversity of Heliconius butterflies to identify a gene that causes adaptive variation of black wing patterns within and between species. Linkage mapping in two species groups, gene-expression analysis in seven species, and pharmacological treatments all indicate that cis-regulatory evolution of the WntA ligand underpins discrete changes in color pattern features across the Heliconius genus. These results illustrate how the direct modulation of morphogen sources can generate a wide array of unique morphologies, thus providing a link between natural genetic variation, pattern formation, and adaptation.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

Evolution of an avian pigmentation gene correlates with a measure of sexual selection

Nicola J. Nadeau; Terry Burke; Nicholas I. Mundy

The extravagant plumage traits of male birds are a favourite example of sexual selection. However, to date the units that selection is acting upon, the genes themselves have been a ‘black box’. Here, we report evidence of change driven by sexual selection at a pigmentation gene locus in the galliform birds. Across species, we find a correlation between the rate of amino acid change (dN/dS) at this locus (MC1R) and the degree of sexual dichromatism, which we use as a measure of the strength of sexual selection. There is no evidence for a similar pattern in any of five other loci (four candidate and one control locus). This is consistent with previous work on colour polymorphisms and suggests that MC1R may be a key target for selection acting on plumage colour. The pattern of selection at MC1R seems to be consistent with the continuous or cyclical evolution of traits and preferences that is the outcome of several Fisherian and good-genes models of sexual selection. In contrast, we found no support for models of sexual selection that predict an increase in purifying selection as a result of purging of deleterious mutations or for models that predict an increased rate of mutation in association with stronger sexual selection.


PLOS Genetics | 2010

Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade

Simon W. Baxter; Nicola J. Nadeau; Luana S. Maroja; Paul Wilkinson; Brian A. Counterman; Anna L A Dawson; Margarita Beltrán; Silvia Perez-Espona; Nicola Chamberlain; Laura Ferguson; Richard Clark; Claire Davidson; Rebecca Glithero; James Mallet; William Owen McMillan; Marcus R. Kronforst; Mathieu Joron; Richard H. ffrench-Constant; Chris D. Jiggins

Wing patterning in Heliconius butterflies is a longstanding example of both Müllerian mimicry and phenotypic radiation under strong natural selection. The loci controlling such patterns are “hotspots” for adaptive evolution with great allelic diversity across different species in the genus. We characterise nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium, and candidate gene expression at two loci and across multiple hybrid zones in Heliconius melpomene and relatives. Alleles at HmB control the presence or absence of the red forewing band, while alleles at HmYb control the yellow hindwing bar. Across HmYb two regions, separated by ∼100 kb, show significant genotype-by-phenotype associations that are replicated across independent hybrid zones. In contrast, at HmB a single peak of association indicates the likely position of functional sites at three genes, encoding a kinesin, a G-protein coupled receptor, and an mRNA splicing factor. At both HmYb and HmB there is evidence for enhanced linkage disequilibrium (LD) between associated sites separated by up to 14 kb, suggesting that multiple sites are under selection. However, there was no evidence for reduced variation or deviations from neutrality that might indicate a recent selective sweep, consistent with these alleles being relatively old. Of the three genes showing an association with the HmB locus, the kinesin shows differences in wing disc expression between races that are replicated in the co-mimic, Heliconius erato, providing striking evidence for parallel changes in gene expression between Müllerian co-mimics. Wing patterning loci in Heliconius melpomene therefore show a haplotype structure maintained by selection, but no evidence for a recent selective sweep. The complex genetic pattern contrasts with the simple genetic basis of many adaptive traits studied previously, but may provide a better model for most adaptation in natural populations that has arisen over millions rather than tens of years.


Molecular Ecology | 2010

Characterization of a hotspot for mimicry: assembly of a butterfly wing transcriptome to genomic sequence at the HmYb/Sb locus

Laura Ferguson; Siu Fai Lee; Nicola Chamberlain; Nicola J. Nadeau; Mathieu Joron; Simon W. Baxter; Paul Wilkinson; Alexie Papanicolaou; Sujai Kumar; Thuan Jin Kee; Richard Clark; Claire Davidson; Rebecca Glithero; Helen Beasley; Heiko Vogel; Richard H. ffrench-Constant; Chris D. Jiggins

The mimetic wing patterns of Heliconius butterflies are an excellent example of both adaptive radiation and convergent evolution. Alleles at the HmYb and HmSb loci control the presence/absence of hindwing bar and hindwing margin phenotypes respectively between divergent races of Heliconius melpomene, and also between sister species. Here, we used fine‐scale linkage mapping to identify and sequence a BAC tilepath across the HmYb/Sb loci. We also generated transcriptome sequence data for two wing pattern forms of H. melpomene that differed in HmYb/Sb alleles using 454 sequencing technology. Custom scripts were used to process the sequence traces and generate transcriptome assemblies. Genomic sequence for the HmYb/Sb candidate region was annotated both using the MAKER pipeline and manually using transcriptome sequence reads. In total, 28 genes were identified in the HmYb/Sb candidate region, six of which have alternative splice forms. None of these are orthologues of genes previously identified as being expressed in butterfly wing pattern development, implying previously undescribed molecular mechanisms of pattern determination on Heliconius wings. The use of next‐generation sequencing has therefore facilitated DNA annotation of a poorly characterized genome, and generated hypotheses regarding the identity of wing pattern at the HmYb/Sb loci.


Genetics | 2008

Characterization of Japanese Quail yellow as a Genomic Deletion Upstream of the Avian Homolog of the Mammalian ASIP (agouti) Gene

Nicola J. Nadeau; Francis Minvielle; Shin-ichi Ito; Miho Inoue-Murayama; David Gourichon; Sarah Follett; Terry Burke; Nicholas I. Mundy

ASIP is an important pigmentation gene responsible for dorsoventral and hair-cycle-specific melanin-based color patterning in mammals. We report some of the first evidence that the avian ASIP gene has a role in pigmentation. We have characterized the genetic basis of the homozygous lethal Japanese quail yellow mutation as a >90-kb deletion upstream of ASIP. This deletion encompasses almost the entire coding sequence of two upstream loci, RALY and EIF2B, and places ASIP expression under control of the RALY promoter, leading to the presence of a novel transcript. ASIP mRNA expression was upregulated in many tissues in yellow compared to wild type but was not universal, and consistent differences were not observed among skins of yellow and wild-type quail. In a microarray analysis on developing feather buds, the locus with the largest downregulation in yellow quail was SLC24A5, implying that it is regulated by ASIP. Finally, we document the presence of ventral skin-specific isoforms of ASIP mRNA in both wild-type quails and chickens. Overall, there are remarkable similarities between yellow in quail and lethal yellow in mouse, which involve a deletion in a similar genomic position. The presence of ventral-specific ASIP expression in birds shows that this feature is conserved across vertebrates.


Genome Research | 2014

Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato

Nicola J. Nadeau; Mayt e Ruiz; Patricio Salazar; Brian A. Counterman; Jose Alejandro Medina; Humberto Ortiz-Zuazaga; Anna Morrison; W. Owen McMillan; Chris D. Jiggins; Riccardo Papa

Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data-alignment to a reference genome and de novo assembly-and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti.

Collaboration


Dive into the Nicola J. Nadeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu Joron

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Ferguson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge