Nicola K. Gray
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicola K. Gray.
Nature Genetics | 2008
Veronique Vitart; Igor Rudan; Caroline Hayward; Nicola K. Gray; James A B Floyd; Colin N. A. Palmer; Sara Knott; Ivana Kolcic; Ozren Polasek; Juergen Graessler; James F. Wilson; Anthony Marinaki; Philip L. Riches; Xinhua Shu; Branka Janićijević; Nina Smolej-Narančić; Barbara Gorgoni; J.E. Morgan; Susan Campbell; Zrinka Biloglav; Lovorka Barac-Lauc; Marijana Peričić; Irena Martinović Klarić; Lina Zgaga; Tatjana Škarić-Jurić; Sarah H. Wild; William A. Richardson; Peter Hohenstein; Charley H. Kimber; Albert Tenesa
Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200–500 μM) compared with other mammals (3–120 μM). About 70% of daily urate disposal occurs via the kidneys, and in 5–25% of the human population, impaired renal excretion leads to hyperuricemia. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7–5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes.
Trends in Biochemical Sciences | 2003
Gavin S. Wilkie; Kirsten S. Dickson; Nicola K. Gray
The translational regulation of specific mRNAs is important for controlling gene expression. The past few years have seen a rapid expansion in the identification and characterization of mRNA regulatory elements and their binding proteins. For the majority of these examples, the mechanism by which translational regulation is achieved is not well understood. Nevertheless, detailed analyses of a few examples show that almost every event in the initiation pathway, from binding of the cap complex to the joining of the 60S ribosomal subunit, is subject to regulation.
The EMBO Journal | 1991
Thomas Dandekar; R Stripecke; Nicola K. Gray; Britta Goossen; A Constable; H E Johansson; Matthias W. Hentze
Iron‐responsive elements (IREs) are regulatory RNA elements which are characterized by a phylogenetically defined sequence‐structure motif. Their biological function is to provide a specific binding site for the IRE‐binding protein (IRE‐BP). Iron starvation of cells induces high affinity binding of the cytoplasmic IRE‐BP to an IRE which has at least two different known biological consequences, repression of ferritin mRNA translation and stabilization of the transferrin receptor transcript. We report the identification of a novel, evolutionarily conserved IRE motif in the 5′ UTR of murine and human erythroid‐specific delta‐aminolevulinic acid synthase (eALAS) mRNA which encodes the first, and possibly rate limiting, enzyme of the heme biosynthetic pathway. We demonstrate the function of the eALAS IRE as a specific binding site for the IRE‐BP by gel retardation analyses and by in vitro translation experiments. In addition, we show that the 5′ UTR of eALAS mRNA is sufficient to mediate iron‐dependent translational regulation in vivo. These findings strongly suggest involvement of the IRE‐IRE‐BP system in the control of heme biosynthesis during erythroid differentiation.
The EMBO Journal | 1994
Nicola K. Gray; Matthias W. Hentze
Translation of ferritin and erythroid 5‐aminolevulinate synthase (eALAS) mRNAs is regulated by iron via mRNA‐protein interactions between iron‐responsive elements (IREs) and iron regulatory protein (IRP). In iron‐depleted cells, IRP binds to single IREs located in the 5′ untranslated regions of ferritin and eALAS mRNAs and represses translation initiation. The molecular mechanism underlying this translational repression was investigated using reconstituted, IRE‐IRP‐regulated, cell‐free translation systems. The IRE‐IRP interaction is shown to prevent the association of the 43S translation pre‐initiation complex (including the small ribosomal subunit) with the mRNA. Studies with the spliceosomal protein U1A and mRNAs which harbour specific binding sites for this protein in place of an IRE furthermore reveal that the 5′ termini of mRNAs are generally sensitive to repressor protein‐mediated inhibition of 43S pre‐initiation complex binding.
Molecular Cell | 1998
Martina U. Muckenthaler; Nicola K. Gray; Matthias W. Hentze
Binding of iron regulatory proteins (IRPs) to IREs located in proximity to the cap structure of ferritin H- and L-chain mRNAs blocks ferritin synthesis by preventing the recruitment of the small ribosomal subunit to the mRNA. We have devised a novel procedure to examine the assembly of translation initiation factors (eIFs) on regulated mRNAs. Unexpectedly, we find that the cap binding complex eIF4F (comprising eIF4E, eIF4G, and eIF4A) assembles even when IRP-1 is bound to the cap-proximal IRE. This assembly is futile, because bridging interactions between eIF4F and the small ribosomal subunit cannot be established in the presence of IRP-1. Our findings provide insight into translational control by an mRNA binding protein at the level of translation initiation factors and uncover a key regulatory step in iron homeostasis.
The EMBO Journal | 2000
Nicola K. Gray; Jeffery M. Coller; Kirsten S. Dickson; Marvin Wickens
Translational stimulation of mRNAs during early development is often accompanied by increases in poly(A) tail length. Poly(A)‐binding protein (PAB) is an evolutionarily conserved protein that binds to the poly(A) tails of eukaryotic mRNAs. We examined PAB‘s role in living cells, using both Xenopus laevis oocytes and Saccharomyces cerevisiae, by tethering it to the 3′‐untranslated region of reporter mRNAs. Tethered PAB stimulates translation in vivo. Neither a poly(A) tail nor PABs poly(A)‐binding activity is required. Multiple domains of PAB act redundantly in oocytes to stimulate translation: the interaction of RNA recognition motifs (RRMs) 1 and 2 with eukaryotic initiation factor‐4G correlates with translational stimulation. Interaction with Paip‐1 is insufficient for stimulation. RRMs 3 and 4 also stimulate, but bind neither factor. The regions of tethered PAB required in yeast to stimulate translation and stabilize mRNAs differ, implying that the two functions are distinct. Our results establish that oocytes contain the machinery necessary to support PAB‐mediated translation and suggest that PAB may be an important participant in translational regulation during early development.
The EMBO Journal | 2005
Brian Collier; Barbara Gorgoni; Carolyn Loveridge; Howard J. Cooke; Nicola K. Gray
DAZL proteins are germ‐cell‐specific RNA‐binding proteins essential for gametogenesis. The precise molecular role of these proteins in germ‐cell development remains enigmatic; however, they appear to function in the cytoplasm. In order to directly address the function of vertebrate DAZL proteins, we have used Xenopus laevis oocytes as a model system. Here we demonstrate that members of this family, including Xdazl, mouse Dazl, human DAZL, human DAZ and human BOULE, have the ability to stimulate translation and function at the level of translation initiation. We show that DAZL proteins interact with poly(A)‐binding proteins (PABPs), which are critical for the initiation of translation. Mapping and tethered function experiments suggest that these interactions are physiologically important. This leads to an attractive hypothesis whereby DAZL proteins activate translationally silent mRNAs during germ cell development through the direct recruitment of PABPs.
Journal of The American Society of Nephrology | 2010
Dganit Dinour; Nicola K. Gray; Susan Campbell; Xinhua Shu; Lindsay Sawyer; William A. Richardson; Gideon Rechavi; Ninette Amariglio; Liat Ganon; Ben Ami Sela; Hilla Bahat; Michael Goldman; Joshua Weissgarten; Michael Millar; Alan F. Wright; Eliezer J. Holtzman
Hereditary hypouricemia may result from mutations in the renal tubular uric acid transporter URAT1. Whether mutation of other uric acid transporters produces a similar phenotype is unknown. We studied two families who had severe hereditary hypouricemia and did not have a URAT1 defect. We performed a genome-wide homozygosity screen and linkage analysis and identified the candidate gene SLC2A9, which encodes the glucose transporter 9 (GLUT9). Both families had homozygous SLC2A9 mutations: A missense mutation (L75R) in six affected members of one family and a 36-kb deletion, resulting in a truncated protein, in the other. In vitro, the L75R mutation dramatically impaired transport of uric acid. The mean concentration of serum uric acid of seven homozygous individuals was 0.17 +/- 0.2 mg/dl, and all had a fractional excretion of uric acid >150%. Three individuals had nephrolithiasis, and three had a history of exercise-induced acute renal failure. In conclusion, homozygous loss-of-function mutations of GLUT9 cause a total defect of uric acid absorption, leading to severe renal hypouricemia complicated by nephrolithiasis and exercise-induced acute renal failure. In addition to clarifying renal handling of uric acid, our findings may provide a better understanding of the pathophysiology of acute renal failure, nephrolithiasis, hyperuricemia, and gout.
Molecular Biology Reports | 1994
Nicola K. Gray; Mattias W. Hentze
In addition to the m7G cap structure, the length of the 5′ UTR and the position and context of the AUG initiator codon (which have been discussed elsewhere in this volume), higher order structures within mRNA represent a critical parameter for translation. The role of RNA structure in translation initiation will be considered primarily, although structural elements have also been found to affect translation elongation and termination. We will first describe the different effects of higher order RNA structuresper se, and then consider specific examples of RNA structural elements which control translation initiation by providing binding sites for regulatory proteins.
Molecular and Cellular Biology | 1998
Donald L. Gillian-Daniel; Nicola K. Gray; Jonas Åström; Aaron Barkoff; Marvin Wickens
ABSTRACT The translation of specific maternal mRNAs is regulated during early development. For some mRNAs, an increase in translational activity is correlated with cytoplasmic extension of their poly(A) tails; for others, translational inactivation is correlated with removal of their poly(A) tails. Recent results in several systems suggest that events at the 3′ end of the mRNA can affect the state of the 5′ cap structure, m7G(5′)ppp(5′)G. We focus here on the potential role of cap modifications on translation during early development and on the question of whether any such modifications are dependent on cytoplasmic poly(A) addition or removal. To do so, we injected synthetic RNAs into Xenopus oocytes and examined their cap structures and translational activities during meiotic maturation. We draw four main conclusions. First, the activity of a cytoplasmic guanine-7-methyltransferase increases during oocyte maturation and stimulates translation of an injected mRNA bearing a nonmethylated GpppG cap. The importance of the cap for translation in oocytes is corroborated by the sensitivity of protein synthesis to cap analogs and by the inefficient translation of mRNAs bearing nonphysiologically capped 5′ termini. Second, deadenylation during oocyte maturation does not cause decapping, in contrast to deadenylation-triggered decapping in Saccharomyces cerevisiae. Third, the poly(A) tail and the N-7 methyl group of the cap stimulate translation synergistically during oocyte maturation. Fourth, cap ribose methylation of certain mRNAs is very inefficient and is not required for their translational recruitment by poly(A). These results demonstrate that polyadenylation can cause translational recruitment independent of ribose methylation. We propose that polyadenylation enhances translation through at least two mechanisms that are distinguished by their dependence on ribose modification.