Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Minshall is active.

Publication


Featured researches published by Nicola Minshall.


Journal of Biological Chemistry | 2007

CPEB Interacts with an Ovary-specific eIF4E and 4E-T in Early Xenopus Oocytes

Nicola Minshall; Marie Helene Reiter; Dominique Weil; Nancy Standart

CPEB (cytoplasmic polyadenylation element-binding protein) is an important regulator of translation in oocytes and neurons. Although previous studies of CPEB in late Xenopus oocytes involve the eIF4E-binding protein maskin as the key factor for the repression of maternal mRNA, a second mechanism must exist, since maskin is absent earlier in oogenesis. Using co-immunoprecipitation and gel filtration assays, we show that CPEB specifically interacts, via protein/protein interactions, with the RNA helicase Xp54, the RNA-binding proteins P100(Pat1) and RAP55, the eIF4E-binding protein 4E-T, and an eIF4E protein. Remarkably, these CPEB complex proteins have been characterized, in one or more organism, as P-body, maternal, or neuronal granule components. We do not detect interactions with eIF4E1a, the canonical cap-binding factor, eIF4G, or eIF4A or with proteins expressed late in oogenesis, including maskin, PARN, and 4E-BP1. The eIF4E protein was identified as eIF4E1b, a close homolog of eIF4E1a, whose expression is restricted to oocytes and early embryos. Although eIF4E1b possesses all residues required for cap and eIF4G binding, it binds m7GTP weakly, and in pull-down assays, rather than binding eIF4G, it binds 4E-T, in a manner independent of the consensus eIF4E-binding site, YSKEELL. Wild type and Y-A mutant 4E-T (which binds eIF4E1b but not eIF4E1a), when tethered to a reporter mRNA, represses its translation in a cap-dependent manner, and injection of eIF4E1b antibody accelerates meiotic maturation. Altogether, our data suggest that CPEB, partnered with several highly conserved RNA-binding partners, inhibits protein synthesis in oocytes using a novel pairing of 4E-T and eIF4E1b.


Critical Reviews in Biochemistry and Molecular Biology | 2005

RNA-Binding Proteins in Early Development

Lucy J. Colegrove-Otero; Nicola Minshall; Nancy Standart

ABSTRACT RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3′-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.


RNA | 2009

Two Piwi proteins, Xiwi and Xili, are expressed in the Xenopus female germline

Anna Wilczynska; Nicola Minshall; Javier Armisen; Eric A. Miska; Nancy Standart

The Argonaute superfamily is a large family of RNA-binding proteins involved in gene regulation mediated by small noncoding RNA and characterized by the presence of PAZ and PIWI domains. The family consists of two branches, the Ago and the Piwi clade. Piwi proteins bind to 21-30-nucleotide-long Piwi-interacting RNAs (piRNAs), which map primarily to transposons and repeated sequence elements. Piwi/piRNAs are important regulators of gametogenesis and have been proposed to play roles in transposon silencing, DNA methylation, transcriptional silencing, and/or post-transcriptional control of translation and RNA stability. Most reports to date have concentrated on the Piwi family members in the male germline. We have identified four Piwi proteins in Xenopus and demonstrate that two, namely, Xiwi1b and Xili, are expressed in the oocyte and early embryo. Xiwi1 and Xili are predominantly found in small, separate complexes, and we do not detect significant interaction of Piwi proteins with the cap-binding complex. Putative nuclear localization and export signals were identified in Xiwi1 and Xili, supporting our observation that Xiwi1, but not Xili, is a nucleo-cytoplasmic protein. Furthermore, by immunoprecipitation of small RNAs, we establish Xiwi1 as a bona fide Piwi protein. These results suggest that the Piwi/piRNA pathway is active in translationally repressed oocytes. This is a significant finding as the Xenopus model provides an excellent tool to study post-transcriptional mechanisms.


Nucleic Acids Research | 2014

Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing

Anastasiia Kamenska; Wei-Ting Lu; Dorota Kubacka; Helen Broomhead; Nicola Minshall; Martin Bushell; Nancy Standart

A key player in translation initiation is eIF4E, the mRNA 5′ cap-binding protein. 4E-Transporter (4E-T) is a recently characterized eIF4E-binding protein, which regulates specific mRNAs in several developmental model systems. Here, we first investigated the role of its enrichment in P-bodies and eIF4E-binding in translational regulation in mammalian cells. Identification of the conserved C-terminal sequences that target 4E-T to P-bodies was enabled by comparison of vertebrate proteins with homologues in Drosophila (Cup and CG32016) and Caenorhabditis elegans by sequence and cellular distribution. In tether function assays, 4E-T represses bound mRNA translation, in a manner independent of these localization sequences, or of endogenous P-bodies. Quantitative polymerase chain reaction and northern blot analysis verified that bound mRNA remained intact and polyadenylated. Ectopic 4E-T reduces translation globally in a manner dependent on eIF4E binding its consensus Y30X4Lϕ site. In contrast, tethered 4E-T continued to repress translation when eIF4E-binding was prevented by mutagenesis of YX4Lϕ, and modestly enhanced the decay of bound mRNA, compared with wild-type 4E-T, mediated by increased binding of CNOT1/7 deadenylase subunits. As depleting 4E-T from HeLa cells increased steady-state translation, in part due to relief of microRNA-mediated silencing, this work demonstrates the conserved yet unconventional mechanism of 4E-T silencing of particular subsets of mRNAs.


Molecular Biology of the Cell | 2015

P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes

Jessica Ayache; Marianne Bénard; Michèle Ernoult-Lange; Nicola Minshall; Nancy Standart; Michel Kress; Dominique Weil

DDX6 is an abundant DEAD-box helicase associated with various complexes involved in mRNA decay and repression. Its interactome in human cells was analyzed to identify its most prominent partners. Among them, three proteins were essential for P-body assembly in all tested conditions: DDX6, 4E-T, and LSM14A.


Biochemical Journal | 2003

Role of cdc2 kinase phosphorylation and conserved N-terminal proteolysis motifs in cytoplasmic polyadenylation-element-binding protein (CPEB) complex dissociation and degradation.

George Thom; Nicola Minshall; Anna Git; Joanna Argasinska; Nancy Standart

Cytoplasmic polyadenylation-element-binding protein (CPEB) is a well-characterized and important regulator of translation of maternal mRNA in early development in organisms ranging from worms, flies and clams to frogs and mice. Previous studies provided evidence that clam and Xenopus CPEB are hyperphosphorylated at germinal vesicle breakdown (GVBD) by cdc2 kinase, and degraded shortly after. To examine the conserved features of CPEB that mediate its modification during meiotic maturation, we microinjected mRNA encoding wild-type and mutated clam CPEB into Xenopus oocytes that were subsequently allowed to mature with progesterone. We observed that (i) ectopically expressed clam CPEB is phosphorylated at GVBD and subsequently degraded, mirroring the fate of the endogenous Xenopus CPEB protein, (ii) mutation of nine Ser/Thr Pro-directed kinase sites prevents phosphorylation and degradation and (iii) deletion of the PEST box, and to a lesser extent of the putative cyclin destruction box, generates a stable and phosphorylated version of CPEB. We conclude that phosphorylation of both consensus and non-consensus sites by cdc2 kinase targets clam CPEB for PEST-mediated destruction. We also show that phosphorylation of CPEB mediates its dissociation from ribonucleoprotein complexes, prior to degradation. Our findings reinforce results obtained in Xenopus, and have implications for CPEB from other invertebrates including Drosophila, Caenorhabditis elegans and Aplysia, which lack PEST boxes.


PLOS ONE | 2013

Investigating the Consequences of eIF4E2 (4EHP) Interaction with 4E-Transporter on Its Cellular Distribution in HeLa Cells

Dorota Kubacka; Anastasiia Kamenska; Helen Broomhead; Nicola Minshall; Edward Darzynkiewicz; Nancy Standart

In addition to the canonical eIF4E cap-binding protein, eukaryotes have evolved sequence–related variants with distinct features, some of which have been shown to negatively regulate translation of particular mRNAs, but which remain poorly characterised. Mammalian eIF4E proteins have been divided into three classes, with class I representing the canonical cap-binding protein eIF4E1. eIF4E1 binds eIF4G to initiate translation, and other eIF4E-binding proteins such as 4E-BPs and 4E-T prevent this interaction by binding eIF4E1 with the same consensus sequence YX 4Lϕ. We investigate here the interaction of human eIF4E2 (4EHP), a class II eIF4E protein, which binds the cap weakly, with eIF4E-transporter protein, 4E-T. We first show that ratios of eIF4E1:4E-T range from 50:1 to 15:1 in HeLa and HEK293 cells respectively, while those of eIF4E2:4E-T vary from 6:1 to 3:1. We next provide evidence that eIF4E2 binds 4E-T in the yeast two hybrid assay, as well as in pull-down assays and by recruitment to P-bodies in mammalian cells. We also show that while both eIF4E1 and eIF4E2 bind 4E-T via the canonical YX 4Lϕ sequence, nearby downstream sequences also influence eIF4E:4E-T interactions. Indirect immunofluorescence was used to demonstrate that eIF4E2, normally homogeneously localised in the cytoplasm, does not redistribute to stress granules in arsenite-treated cells, nor to P-bodies in Actinomycin D-treated cells, in contrast to eIF4E1. Moreover, eIF4E2 shuttles through nuclei in a Crm1-dependent manner, but in an 4E-T–independent manner, also unlike eIF4E1. Altogether we conclude that while both cap-binding proteins interact with 4E-T, and can be recruited by 4E-T to P-bodies, eIF4E2 functions are likely to be distinct from those of eIF4E1, both in the cytoplasm and nucleus, further extending our understanding of mammalian class I and II cap-binding proteins.


Journal of Molecular Biology | 2015

Distinct features of cap binding by eIF4E1b proteins.

Dorota Kubacka; Ricardo Núñez Miguel; Nicola Minshall; Edward Darzynkiewicz; Nancy Standart; Joanna Zuberek

eIF4E1b, closely related to the canonical translation initiation factor 4E (eIF4E1a), cap-binding protein is highly expressed in mouse, Xenopus and zebrafish oocytes. We have previously characterized eIF4E1b as a component of the CPEB mRNP translation repressor complex along with the eIF4E-binding protein 4E-Transporter, the Xp54/DDX6 RNA helicase and additional RNA-binding proteins. eIF4E1b exhibited only very weak interactions with m7GTP-Sepharose and, rather than binding eIF4G, interacted with 4E-T. Here we undertook a detailed examination of both Xenopus and human eIF4E1b interactions with cap analogues using fluorescence titration and homology modeling. The predicted structure of eIF4E1b maintains the α + β fold characteristic of eIF4E proteins and its cap-binding pocket is similarly arranged by critical amino acids: Trp56, Trp102, Glu103, Trp166, Arg112, Arg157 and Lys162 and residues of the C-terminal loop. However, we demonstrate that eIF4E1b is 3-fold less well able to bind the cap than eIF4E1a, both proteins being highly stimulated by methylation at N7 of guanine. Moreover, eIF4E1b proteins are distinguishable from eIF4E1a by a set of conserved amino acid substitutions, several of which are located near to cap-binding residues. Indeed, eIF4E1b possesses several distinct features, namely, enhancement of cap binding by a benzyl group at N7 position of guanine, a reduced response to increasing length of the phosphate chain and increased binding to a cap separated by a linker from Sepharose, suggesting differences in the arrangement of the proteins core. In agreement, mutagenesis of the amino acids differentiating eIF4E1b from eIF4E1a reduces cap binding by eIF4E1a 2-fold, demonstrating their role in modulating cap binding.


Methods | 2010

Translational control assessed using the tethered function assay in Xenopus oocytes

Nicola Minshall; Rachel Allison; Aline Marnef; Anna Wilczynska; Nancy Standart

The tethered function assay is a method designed to address the role of an RNA-binding protein upon the metabolism of a reporter RNA. The basis of this assay is to artificially tether a test protein to a reporter mRNA by employing an unrelated bacteriophage MS2 or lambda N RNA-protein interaction, and to assess the effects of the test protein on the reporter RNA. In this chapter, we first discuss the principles and validity of the tethered function approach, drawing on appropriate examples from several cell types and of many proteins that regulate RNA in a variety of processes, including RNA processing (splicing, polyadenylation/deadenylation, decay), localisation and protein synthesis. Secondly, we will focus on the use of this approach to monitor translational activation and repression in Xenopus oocytes, giving a detailed protocol, and discussing possible optimizations we have explored.


RNA | 2001

A conserved role of a DEAD box helicase in mRNA masking.

Nicola Minshall; George Thom; Nancy Standart

Collaboration


Dive into the Nicola Minshall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Weil

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Thom

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Wilczynska

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

James Walker

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge