Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Ticozzi is active.

Publication


Featured researches published by Nicola Ticozzi.


Science | 2009

Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis

Thomas J. Kwiatkowski; Daryl A. Bosco; Ashley Lyn Leclerc; E. Tamrazian; Charles R. Vanderburg; Carsten Russ; A. Davis; J. Gilchrist; E. J. Kasarskis; T. Munsat; Paul N. Valdmanis; Guy A. Rouleau; Betsy A. Hosler; Pietro Cortelli; P. J. De Jong; Yuko Yoshinaga; Jonathan L. Haines; Margaret A. Pericak-Vance; Jianhua Yan; Nicola Ticozzi; Teepu Siddique; Diane McKenna-Yasek; Peter C. Sapp; H. R. Horvitz; John Landers; Robert H. Brown

Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder. Ten percent of cases are inherited; most involve unidentified genes. We report here 13 mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene on chromosome 16 that were specific for familial ALS. The FUS/TLS protein binds to RNA, functions in diverse processes, and is normally located predominantly in the nucleus. In contrast, the mutant forms of FUS/TLS accumulated in the cytoplasm of neurons, a pathology that is similar to that of the gene TAR DNA-binding protein 43 (TDP43), whose mutations also cause ALS. Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders.


Nature Neuroscience | 2012

Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis

Chi Hong Wu; Claudia Fallini; Nicola Ticozzi; Pamela Keagle; Peter C. Sapp; Katarzyna Piotrowska; Patrick Lowe; Max Koppers; Diane McKenna-Yasek; Desiree M. Baron; Jason E. Kost; Paloma Gonzalez-Perez; Andrew Fox; Jenni Adams; Franco Taroni; Cinzia Tiloca; Ashley Lyn Leclerc; Shawn C. Chafe; Dev Mangroo; Melissa J. Moore; Jill A. Zitzewitz; Zuo Shang Xu; Leonard H. van den Berg; Jonathan D. Glass; Gabriele Siciliano; Elizabeth T. Cirulli; David B. Goldstein; François Salachas; Vincent Meininger; Wilfried Rossoll

MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration.


Science | 2015

Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways

Elizabeth T. Cirulli; Brittany N. Lasseigne; Slavé Petrovski; Peter C. Sapp; Patrick A. Dion; Claire S. Leblond; Julien Couthouis; Yi Fan Lu; Quanli Wang; Brian Krueger; Zhong Ren; Jonathan Keebler; Yujun Han; Shawn Levy; Braden E. Boone; Jack R. Wimbish; Lindsay L. Waite; Angela L. Jones; John P. Carulli; Aaron G. Day-Williams; John F. Staropoli; Winnie Xin; Alessandra Chesi; Alya R. Raphael; Diane McKenna-Yasek; Janet Cady; J.M.B.Vianney de Jong; Kevin Kenna; Bradley Smith; Simon Topp

New players in Lou Gehrigs disease Amyotrophic lateral sclerosis (ALS), often referred to as “Lou Gehrigs disease,” is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Cirulli et al. sequenced the expressed genes of nearly 3000 ALS patients and compared them with those of more than 6000 controls (see the Perspective by Singleton and Traynor). They identified several proteins that were linked to disease in patients. One such protein, TBK1, is implicated in innate immunity and autophagy and may represent a therapeutic target. Science, this issue p. 1436; see also p. 1422 Analysis of the expressed genes of nearly 2900 patients with amyotrophic lateral sclerosis and about 6400 controls reveals a disease predisposition–associated gene. [Also see Perspective by Singleton and Traynor] Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.


Human Mutation | 2009

High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis

Lucia Corrado; Antonia Ratti; C. Gellera; Emanuele Buratti; Barbara Castellotti; Yari Carlomagno; Nicola Ticozzi; Letizia Mazzini; Lucia Testa; Franco Taroni; F.E. Baralle; Vincenzo Silani; Sandra D'Alfonso

Recent studies identified rare missense mutations in amyotrophic lateral sclerosis (ALS) patients in the TARDBP gene encoding TAR DNA binding protein (TDP)‐43, the major protein of the ubiquitinated inclusions (UBIs) found in affected motor neurons (MNs). The aim of this study was to further define the spectrum of TARDBP mutations in a large cohort of 666 Italian ALS patients (125 familial and 541 sporadic cases). The entire coding region was sequenced in 281 patients, while in the remaining 385 cases only exon 6 was sequenced. In 18 patients, of which six are familial, we identified 12 different heterozygous missense mutations (nine novel) all locating to exon 6, which were absent in 771 matched controls. The c.1144G>A (p.A382T) variation was observed in seven patients, thus representing the most frequent TARDBP mutation in ALS. Analysis of microsatellites surrounding the TARDBP gene indicated that p.A382T was inherited from a common ancestor in 5 of the 7 patients. Altogether, the frequency of TARDBP gene mutations appears to be particularly high in Italian ALS patients compared to individuals of mainly Northern European origin (2.7% vs. 1%). Western blot analysis of lymphocyte extracts from two patients carrying the p.A382T and p.S393L TARDBP mutations showed the presence of lower molecular weight TDP‐43 bands, which were more abundant than observed in healthy controls and patients negative for TARDBP mutations. In conclusion, this report contributes to the demonstration of the causative role of the TARDBP gene in ALS pathogenesis and indicates that mutations may affect the stability of the protein even in nonneuronal tissues. Hum Mutat 0, 1–7, 2009.


European Journal of Human Genetics | 2013

The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder.

Bradley Smith; Stephen Newhouse; Aleksey Shatunov; Caroline Vance; Simon Topp; Lauren Johnson; John Miller; Youn Bok Lee; Claire Troakes; Kirsten M. Scott; Ashley Jones; Ian Gray; Jamie Wright; Tibor Hortobágyi; Safa Al-Sarraj; Boris Rogelj; John Powell; Michelle K. Lupton; Simon Lovestone; Peter C. Sapp; Markus Weber; Peter J. Nestor; Helenius J. Schelhaas; Anneloor ten Asbroek; Vincenzo Silani; Cinzia Gellera; Franco Taroni; Nicola Ticozzi; Leonard H. van den Berg; Jan H. Veldink

A massive hexanucleotide repeat expansion mutation (HREM) in C9ORF72 has recently been linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we describe the frequency, origin and stability of this mutation in ALS+/−FTD from five European cohorts (total n=1347). Single-nucleotide polymorphisms defining the risk haplotype in linked kindreds were genotyped in cases (n=434) and controls (n=856). Haplotypes were analysed using PLINK and aged using DMLE+. In a London clinic cohort, the HREM was the most common mutation in familial ALS+/−FTD: C9ORF72 29/112 (26%), SOD1 27/112 (24%), TARDBP 1/112 (1%) and FUS 4/112 (4%) and detected in 13/216 (6%) of unselected sporadic ALS cases but was rare in controls (3/856, 0.3%). HREM prevalence was high for familial ALS+/−FTD throughout Europe: Belgium 19/22 (86%), Sweden 30/41 (73%), the Netherlands 10/27 (37%) and Italy 4/20 (20%). The HREM did not affect the age at onset or survival of ALS patients. Haplotype analysis identified a common founder in all 137 HREM carriers that arose around 6300 years ago. The haplotype from which the HREM arose is intrinsically unstable with an increased number of repeats (average 8, compared with 2 for controls, P<10−8). We conclude that the HREM has a single founder and is the most common mutation in familial and sporadic ALS in Europe.


Annals of Neurology | 2011

Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis

Michael A. van Es; Helenius J. Schelhaas; Paul W.J. van Vught; Nicola Ticozzi; Peter Andersen; Ewout J.N. Groen; Claudia Schulte; Hylke M. Blauw; Max Koppers; Frank P. Diekstra; Katsumi Fumoto; Ashley Lyn Leclerc; Pamela Keagle; Bastiaan R. Bloem; H. Scheffer; Bart F L Van Nuenen; Marka van Blitterswijk; Wouter van Rheenen; Anne Marie Wills; Patrick Lowe; Guo-fu Hu; Wenhao Yu; Hiroko Kishikawa; David Wu; Rebecca D. Folkerth; Claudio Mariani; Stefano Goldwurm; Gianni Pezzoli; Philip Van Damme; Robin Lemmens

Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.


Neurogenetics | 2008

Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis

Cinzia Gellera; Claudia Colombrita; Nicola Ticozzi; Barbara Castellotti; Cinzia Bragato; Antonia Ratti; Franco Taroni; Vincenzo Silani

Angiogenin (ANG) gene, coding for an angiogenic factor up-regulated by hypoxia and expressed in ventral horn motor neurons, is a novel candidate for the pathogenesis of amyotrophic lateral sclerosis (ALS). ALS is a fatal neurodegenerative disease characterized by the selective loss of cortical and spinal motor neurons. Missense mutations in ANG gene have been identified in two ALS populations from Northern Europe and North America, both in familial (FALS) and sporadic (SALS) patients, but they do not seem to be frequent in the Italian population. We performed a mutational screening in a large cohort of 737 Italian ALS patients, including 605 SALS and 132 FALS cases. We identified seven different mutations, five of which are novel, in nine patients (six SALS and three FALS), but not in 515 healthy controls. Three mutations are located in the signal peptide region, three in the coding sequence, and one in the 3′ untranslated region. In our ALS population, the observed mutational frequency of ANG gene accounts for about 1.2%, with an overrepresentation of FALS (2.3%) compared to SALS (1%) cases. We also found the previously described I46V substitution in six patients and four controls, suggesting that this mutation may represent a benign variant, at least in the Italian population. Our results provide further evidence of a tight link between angiogenesis and ALS pathogenesis and suggest that mutations in ANG gene are associated with an increased risk to develop ALS.


American Journal of Medical Genetics | 2011

Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis

Nicola Ticozzi; Caroline Vance; Ashley Lyn Leclerc; Pamela Keagle; Jonathan D. Glass; Diane McKenna-Yasek; Peter C. Sapp; Vincenzo Silani; Daryl A. Bosco; Christopher Shaw; Robert H. Brown; John Landers

FUS, EWS, and TAF15 belong to the TET family of structurally similar DNA/RNA‐binding proteins. Mutations in the FUS gene have recently been discovered as a cause of familial amyotrophic lateral sclerosis (FALS). Given the structural and functional similarities between the three genes, we screened TAF15 and EWS in 263 and 94 index FALS cases, respectively. No coding variants were found in EWS, while we identified six novel changes in TAF15. Of these, two 24 bp deletions and a R388H missense variant were also found in healthy controls. A D386N substitution was shown not to segregate with the disease in the affected pedigree. A single A31T and two R395Q changes were identified in FALS cases but not in over 1,100 controls. Interestingly, one of the R395Q FALS cases also harbors a TARDBP mutation (G384R). Altogether, these results suggest that additional studies are needed to determine whether mutations in the TAF15 gene represent a cause of FALS.


Archives Italiennes De Biologie | 2011

Genetics of familial Amyotrophic lateral sclerosis.

Nicola Ticozzi; Cinzia Tiloca; Claudia Morelli; Claudia Colombrita; Barbara Poletti; Alberto Doretti; Luca Maderna; Stefano Messina; Antonia Ratti; Vincenzo Silani

Amyotrophic lateral sclerosis (ALS) is a late onset, rapidly progressive and ultimately fatal neurodegenerative disease, caused by the loss of motor neurons in the brain and spinal cord. About 10% of all ALS cases are familial (FALS), and constitute a clinically and genetically heterogeneous entity. To date, FALS has been linked to mutations in 10 different genes and to four additional chromosomal loci. Research on FALS genetics, and in particular the discoveries of mutations in the SOD1, TARDBP, and FUS genes, has provided essential information toward the understanding of the pathogenesis of ALS in general. This review presents a tentative classification of all FALS-associated genes identified so far.


Neurobiology of Aging | 2012

C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect

Antonia Ratti; Lucia Corrado; Barbara Castellotti; Roberto Del Bo; Isabella Fogh; Cristina Cereda; Cinzia Tiloca; Alessandra Bagarotti; Viviana Pensato; Michela Ranieri; Stella Gagliardi; Daniela Calini; Letizia Mazzini; Franco Taroni; Stefania Corti; Mauro Ceroni; Gaia Donata Oggioni; Kuang Lin; John Powell; Gianni Sorarù; Nicola Ticozzi; Giacomo P. Comi; Sandra D'Alfonso; Cinzia Gellera; Vincenzo Silani

A hexanucleotide repeat expansion (RE) in C9ORF72 gene was recently reported as the main cause of amyotrophic lateral sclerosis (ALS) and cases with frontotemporal dementia. We screened C9ORF72 in a large cohort of 259 familial ALS, 1275 sporadic ALS, and 862 control individuals of Italian descent. We found RE in 23.9% familial ALS, 5.1% sporadic ALS, and 0.2% controls. Two cases carried the RE together with mutations in other ALS-associated genes. The phenotype of RE carriers was characterized by bulbar-onset, shorter survival, and association with cognitive and behavioral impairment. Extrapyramidal and cerebellar signs were also observed in few patients. Genotype data revealed that 95% of RE carriers shared a restricted 10-single nucleotide polymorphism haplotype within the previously reported 20-single nucleotide polymorphism risk haplotype, detectable in only 27% of nonexpanded ALS cases and in 28% of controls, suggesting a common founder with cohorts of North European ancestry. Although C9ORF72 RE segregates with disease, the identification of RE both in controls and in patients carrying additional pathogenic mutations suggests that penetrance and phenotypic expression of C9ORF72 RE may depend on additional genetic risk factors.

Collaboration


Dive into the Nicola Ticozzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucia Corrado

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Letizia Mazzini

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge