Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolaas A. Vermeulen is active.

Publication


Featured researches published by Nicolaas A. Vermeulen.


Journal of the American Chemical Society | 2014

A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO2 Fixation and Regioselective and Enantioretentive Epoxide Activation

M. Hassan Beyzavi; Rachel C. Klet; Samat Tussupbayev; Joshua Borycz; Nicolaas A. Vermeulen; Christopher J. Cramer; J. Fraser Stoddart; Joseph T. Hupp; Omar K. Farha

Porous heterogeneous catalysts play a pivotal role in the chemical industry. Herein a new Hf-based metal-organic framework (Hf-NU-1000) incorporating Hf6 clusters is reported. It demonstrates high catalytic efficiency for the activation of epoxides, facilitating the quantitative chemical fixation of CO2 into five-membered cyclic carbonates under ambient conditions, rendering this material an excellent catalyst. As a multifunctional catalyst, Hf-NU-1000 is also efficient for other epoxide activations, leading to the regioselective and enantioretentive formation of 1,2-bifuctionalized systems via solvolytic nucleophilic ring opening.


Nature Nanotechnology | 2015

An artificial molecular pump

Chuyang Cheng; Paul R. McGonigal; Severin T. Schneebeli; Hao Li; Nicolaas A. Vermeulen; Chenfeng Ke; J. Fraser Stoddart

Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.


Journal of the American Chemical Society | 2016

CD-MOF: A Versatile Separation Medium

Karel J. Hartlieb; James M. Holcroft; Peyman Z. Moghadam; Nicolaas A. Vermeulen; Mohammed M. Algaradah; Majed S. Nassar; Youssry Y. Botros; Randall Q. Snurr; J. Fraser Stoddart

Porous metal-organic frameworks (MOFs) have been studied in the context of a wide variety of applications, particularly in relation to molecular storage and separation sciences. Recently, we reported a green, renewable framework material composed of γ-cyclodextrin (γ-CD) and alkali metal salts--namely, CD-MOF. This porous material has been shown to facilitate the separation of mixtures of alkylaromatic compounds, including the BTEX mixture (benzene, toluene, ethylbenzene, and the regioisomers of xylene), into their pure components, in both the liquid and gas phases, in an energy-efficient manner which could have implications for the petrochemical industry. Here, we report the ability of CD-MOF to separate a wide variety of mixtures, including ethylbenzene from styrene, haloaromatics, terpinenes, pinenes and other chiral compounds. CD-MOF retains saturated compounds to a greater extent than their unsaturated analogues. Also, the location of a double bond within a molecule influences its retention within the extended framework, as revealed in the case of the structural isomers of pinene and terpinine, where the isomers with exocyclic double bonds are more highly retained than those with endocyclic double bonds. The ability of CD-MOF to separate various mono- and disubstituted haloaromatic compounds appears to be controlled by both the size of the halogen substituents and the strength of the noncovalent bonding interactions between the analyte and the framework, an observation which has been confirmed by molecular simulations. Since CD-MOF is a homochiral framework, it is also able to resolve the enantiomers of chiral analytes, including those of limonene and 1-phenylethanol. These findings could lead to cheaper and easier-to-prepare stationary phases for HPLC separations when compared with other chiral stationary phases, such as CD-bonded silica particles.


Journal of the American Chemical Society | 2013

Pillar[5]arene as a Co-Factor in Templating Rotaxane Formation

Chenfeng Ke; Nathan L. Strutt; Hao Li; Xisen Hou; Karel J. Hartlieb; Paul R. McGonigal; Zhidong Ma; Julien Iehl; Charlotte L. Stern; Chuyang Cheng; Zhixue Zhu; Nicolaas A. Vermeulen; Thomas J. Meade; Youssry Y. Botros; J. Fraser Stoddart

After the manner in which coenzymes often participate in the binding of substrates in the active sites of enzymes, pillar[5]arene, a macrocycle containing five hydroquinone rings linked through their para positions by methylene bridges, modifies the binding properties of cucurbit[6]uril, such that the latter templates azide-alkyne cycloadditions that do not occur in the presence of only the cucurbit[6]uril, a macrocycle composed of six glycoluril residues doubly linked through their nitrogen atoms to each other by methylene groups. Here, we describe how a combination of pillar[5]arene and cucurbit[6]uril interacts cooperatively with bipyridinium dications substituted on their nitrogen atoms with 2-azidoethyl- to 5-azidopentyl moieties to afford, as a result of orthogonal templation, two [4]rotaxanes and one [5]rotaxane in >90% yields inside 2 h at 55 °C in acetonitrile. Since the hydroxyl groups on pillar[5]arene and the carbonyl groups on cucurbit[6]uril form hydrogen bonds readily, these two macrocycles work together in a cooperative fashion to the extent that the four conformational isomers of pillar[5]arene can be trapped on the dumbbell components of the [4]rotaxanes. In the case of the [5]rotaxane, it is possible to isolate a compound containing two pillar[5]arene rings with local C5 symmetries. In addition to fixing the stereochemistries of the pillar[5]arene rings, the regiochemistries associated with the 1,3-dipolar cycloadditions have been extended in their constitutional scope. Under mild conditions, orthogonal recognition motifs have been shown to lead to templation with positive cooperativity that is fast and all but quantitative, as well as being green and efficient.


Journal of the American Chemical Society | 2015

A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst

M. Hassan Beyzavi; Nicolaas A. Vermeulen; Ashlee J. Howarth; Samat Tussupbayev; Aaron B. League; Neil M. Schweitzer; James R. Gallagher; Ana E. Platero-Prats; Nema Hafezi; Amy A. Sarjeant; Jeffrey T. Miller; Karena W. Chapman; J. Fraser Stoddart; Christopher J. Cramer; Joseph T. Hupp; Omar K. Farha

Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular oxygen as a terminal oxidant. The product, a protected 1,2-aminoalcohol, is formed selectively and with high efficiency using this recyclable heterogeneous catalyst. Significantly, the unusual regioselective transformation occurs only when an Fe-decorated Hf6 node and the Fe-porphyrin strut work in concert. This report is an example of concurrent orthogonal tandem catalysis.


Nature Protocols | 2016

Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000

Timothy C. Wang; Nicolaas A. Vermeulen; In S oo Kim; Alex B. F. Martinson; J. Fraser Stoddart; Joseph T. Hupp; Omar K. Farha

The synthesis of NU-1000, a highly robust mesoporous (containing pores >2 nm) metal-organic framework (MOF), can be conducted efficiently on a multigram scale from inexpensive starting materials. Tetrabromopyrene and (4-(ethoxycarbonyl)phenyl)boronic acid can easily be coupled to prepare the requisite organic strut with four metal-binding sites in the form of four carboxylic acids, while zirconyl chloride octahydrate is used as a precursor for the well-defined metal oxide clusters. NU-1000 has been reported as an excellent candidate for the separation of gases, and it is a versatile scaffold for heterogeneous catalysis. In particular, it is ideal for the catalytic deactivation of nerve agents, and it shows great promise as a new generic platform for a wide range of applications. Multiple post-synthetic modification protocols have been developed using NU-1000 as the parent material, making it a potentially useful scaffold for several catalytic applications. The procedure for the preparation of NU-1000 can be scaled up reliably, and it is suitable for the production of 50 g of the tetracarboxylic acid containing organic linker and 200 mg–2.5 g of NU-1000. The entire synthesis is performed without purification by column chromatography and can be completed within 10 d.


Journal of the American Chemical Society | 2016

Aerobic Linear Allylic C–H Amination: Overcoming Benzoquinone Inhibition

Christopher C. Pattillo; Iulia I. Strambeanu; Pilar Calleja; Nicolaas A. Vermeulen; Tomokazu Mizuno; M. Christina White

An efficient aerobic linear allylic C-H amination reaction is reported under palladium(II)/bis-sulfoxide/Brønsted base catalysis. The reaction operates under preparative, operationally simple conditions (1 equiv of olefin, 1 atm O2 or air) with reduced Pd(II)/bis-sulfoxide catalyst loadings while providing higher turnovers and product yields than systems employing stoichiometric benzoquinone (BQ) as the terminal oxidant. Pd(II)/BQ π-acidic interactions have been invoked in various catalytic processes and are often considered beneficial in promoting reductive functionalizations. When such electrophilic activation for functionalization is not needed, however, BQ at high concentrations may compete with crucial ligand (bis-sulfoxide) binding and inhibit catalysis. Kinetic studies reveal an inverse relationship between the reaction rate and the concentration of BQ, suggesting that BQ is acting as a ligand for Pd(II) which results in an inhibitory effect on catalysis.


Journal of the American Chemical Society | 2016

Non-Interpenetrated Metal-Organic Frameworks Based on Copper(II) Paddlewheel and Oligoparaxylene-Isophthalate Linkers: Synthesis, Structure and Gas Adsorption

Yong Yan; Michal Juríček; François-Xavier Coudert; Nicolaas A. Vermeulen; Sergio Grunder; Anne Dailly; William Lewis; Alexander J. Blake; J. Fraser Stoddart; Martin Schröder

Two metal-organic framework materials, MFM-130 and MFM-131 (MFM = Manchester Framework Material), have been synthesized using two oligoparaxylene (OPX) tetracarboxylate linkers containing four and five aromatic rings, respectively. Both fof-type non-interpenetrated networks contain Kagomé lattice layers comprising [Cu2(COO)4] paddlewheel units and isophthalates, which are pillared by the OPX linkers. Desolvated MFM-130, MFM-130a, shows permanent porosity (BET surface area of 2173 m(2)/g, pore volume of 1.0 cm(3)/g), high H2 storage capacity at 77 K (5.3 wt% at 20 bar and 2.2 wt% at 1 bar), and a higher CH4 adsorption uptake (163 cm(3)(STP)/cm(3) (35 bar and 298 K)) compared with its structural analogue, NOTT-103. MFM-130a also shows impressive selective adsorption of C2H2, C2H4, and C2H6 over CH4 at room temperature, indicating its potential for separation of C2 hydrocarbons from CH4. The single-crystal structure of MFM-131 confirms that the methyl substituents of the paraxylene units block the windows in the Kagomé lattice layer of the framework, effectively inhibiting network interpenetration in MFM-131. This situation is to be contrasted with that of the doubly interpenetrated oligophenylene analogue, NOTT-104. Calculation of the mechanical properties of these two MOFs confirms and explains the instability of MFM-131 upon desolvation in contrast to the behavior of MFM-130. The incorporation of paraxylene units, therefore, provides an efficient method for preventing network interpenetration as well as accessing new functional materials with modified and selective sorption properties for gas substrates.


Journal of the American Chemical Society | 2014

Energetically Demanding Transport in a Supramolecular Assembly

Chuyang Cheng; Paul R. McGonigal; Wei Guang Liu; Hao Li; Nicolaas A. Vermeulen; Chenfeng Ke; Marco Frasconi; Charlotte L. Stern; William A. Goddard; J. Fraser Stoddart

A challenge in contemporary chemistry is the realization of artificial molecular machines that can perform work in solution on their environments. Here, we report on the design and production of a supramolecular flashing energy ratchet capable of processing chemical fuel generated by redox changes to drive a ring in one direction relative to a dumbbell toward an energetically uphill state. The kinetics of the reaction pathway juxtapose a low energy [2]pseudorotaxane that forms under equilibrium conditions with a high energy, metastable [2]pseudorotaxane which resides away from equilibrium.


Journal of Organic Chemistry | 2013

Synthesis of ExnBox Cyclophanes

Jonathan C. Barnes; Michal Juríček; Nicolaas A. Vermeulen; Edward J. Dale; J. Fraser Stoddart

A rapid and efficient synthesis of the extended bipyridinium-based class of cyclophanes--that is, Ex(n)Box(4+) (n = 0-3), where n is the number of p-phenylene rings inserted between the pyridinium rings--is demonstrated, resulting in much higher yields of products along with a reduced output of oligomeric byproducts. Although each cyclophane can be synthesized readily without the use of a precise stoichiometric amount of template, ExBox(4+) can be prepared in 66% yield (following crystallization) using six equivalents of pyrene in a template-directed protocol. This new methodology has been employed to synthesize, in modest yield, a nearly 2.5 nm long cyclophane consisting of 12 aromatic rings.

Collaboration


Dive into the Nicolaas A. Vermeulen's collaboration.

Top Co-Authors

Avatar

J. Fraser Stoddart

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenfeng Ke

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge