Nicolae Corcionivoschi
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolae Corcionivoschi.
Cell Host & Microbe | 2012
Nicolae Corcionivoschi; Luis Alvarez; Thomas H. Sharp; Monika Strengert; Abofu Alemka; Judith Mantell; Paul Verkade; Ulla G. Knaus; Billy Bourke
Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer-membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer-membrane/periplasmic proteins, including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling.
Infection and Immunity | 2009
Nicolae Corcionivoschi; Marguerite Clyne; A. Lyons; A Elmi; O Gundogdu; Brendan W. Wren; Nick Dorrell; Andrey V. Karlyshev; Billy Bourke
ABSTRACT The host cell environment can alter bacterial pathogenicity. We employed a combination of cellular and molecular techniques to study the expression of Campylobacter jejuni polysaccharides cocultured with HCT-8 epithelial cells. After two passages, the amount of membrane-bound high-molecular-weight polysaccharide was considerably reduced. Microarray profiling confirmed significant downregulation of capsular polysaccharide (CPS) locus genes. Experiments using conditioned media showed that sugar depletion occurred only when the bacterial and epithelial cells were cocultured. CPS depletion occurred when C. jejuni organisms were exposed to conditioned media from a different C. jejuni strain but not when exposed to conditioned media from other bacterial species. Proteinase K or heat treatment of conditioned media under coculture conditions abrogated the effect on the sugars, as did formaldehyde fixation and cycloheximide treatment of host cells or chloramphenicol treatment of the bacteria. However, sugar depletion was not affected in flagellar export (fliQ) and quorum-sensing (luxS) gene mutants. Passaged C. jejuni showed reduced invasiveness and increased serum sensitivity in vitro. C. jejuni alters its surface polysaccharides when cocultured with epithelial cells, suggesting the existence of a cross talk mechanism that modulates CPS expression during infection.
Frontiers in Cellular and Infection Microbiology | 2012
Abofu Alemka; Nicolae Corcionivoschi; Billy Bourke
Mucus colonization is an essential early step toward establishing successful infection and disease by mucosal pathogens. There is an emerging literature implicating specific mucin sub-types and mucin modifications in protecting the host from Campylobacter jejuni infection. However, mucosal pathogens have evolved sophisticated mechanisms to breach the mucus layer and C. jejuni in particular appears to harbor specific adaptations to better colonize intestinal mucus. For example, components of mucus are chemotactic for C. jejuni and the rheological properties of mucus promote motility of the organism. Furthermore, recent studies demonstrate that mucins modulate the pathogenicity of C. jejuni in a species-specific manner and likely help determine whether these bacteria become pathogenic (as in humans), or adopt a commensal mode of existence (as in chickens and other animals). This review focuses on recent advances in understanding the complex interplay between C. jejuni and components of the mucus layer.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2013
Jan-Hendrik Gosemann; Florian Friedmacher; Naho Fujiwara; Luis Alvarez; Nicolae Corcionivoschi; Prem Puri
BACKGROUND/PURPOSE Congenital diaphragmatic hernia (CDH) remains a major therapeutic challenge despite advances in neonatal resuscitation and intensive care. The high mortality and morbidity in CDH has been attributed to pulmonary hypoplasia and persistent pulmonary hypertension (PH). Bone morphogenetic protein receptor 2 (BMPR2) plays a key role in pulmonary vasculogenesis during the late stages of fetal lung development. BMPR2 is essential for control of endothelial and smooth muscle cell proliferation. Dysfunction of BMPR2 and downstream signaling have been shown to disturb the crucial balance of proliferation of smooth muscle cells contributing to the pathogenesis of human and experimental PH. We designed this study to investigate the hypothesis that BMPR2 signaling is disrupted in nitrofen-induced CDH. METHODS Pregnant rats were treated with nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D21 and divided into CDH and control. Quantitative real-time polymerase chain reaction, Western blotting, and confocal-immunofluorescence were performed to determine pulmonary gene expression levels and protein expression of BMPR2 and related proteins. RESULTS Pulmonary Bmpr2 gene expression levels were significantly decreased in nitrofen-induced CDH compared to controls. Western blotting and confocal microscopy revealed decreased pulmonary BMPR2 protein expression and increased activation of p38(MAPK) in CDH compared to controls. CONCLUSION The observed disruption of the BMPR2 signaling pathway may lead to extensive vascular remodeling and contribute to PH in the nitrofen-induced CDH model. BMPR2 may therefore represent a potential target for the treatment of PH in CDH.
Pediatric Surgery International | 2013
Jan-H Gosemann; Florian Friedmacher; Manuela Hunziker; Luis Alvarez; Nicolae Corcionivoschi; Prem Puri
AimPersistent pulmonary hypertension remains a major cause of mortality and morbidity in congenital diaphragmatic hernia (CDH). NADPH oxidases (Nox) are the main source of superoxide production in vasculature. Nox4 is highly expressed in the smooth muscle and endothelial cells of the vascular wall and increased activity has been reported in the pulmonary vasculature of both experimental and human pulmonary hypertension. Peroxisome proliferator-activated receptor (PPARγ) is a key regulator of Nox4 expression. Targeted depletion of PPARγ results in pulmonary hypertension phenotype whereas activation of PPARγ attenuates pulmonary hypertension and reduces Nox4 production. The nitrofen-induced CDH model is an established model to study the pathogenesis of pulmonary hypertension in CDH. It has been previously reported that PPARγ-signaling is disrupted during late gestation and H2O2 production is increased in nitrofen-induced CDH. We designed this study to investigate the hypothesis that Nox4 expression and activation is increased and vascular PPARγ is decreased in nitrofen-induced CDH.MethodsPregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D21 and divided into control and CDH. RT-PCR, western blotting and confocal-immunofluorescence-double-staining were performed to determine pulmonary expression levels of PPARγ, Nox4 and Nox4-activation (p22phox).ResultsThere was a marked increase in medial and adventitial thickness in pulmonary arteries of all sizes in CDH compared to controls. Pulmonary Nox4 levels were significantly increased whereas PPARγ levels were decreased in nitrofen-induced CDH compared to controls. Western blotting revealed increased pulmonary protein expression of the Nox4-activating subunit p22phox and decreased protein expression of PPARγ in CDH compared to controls. Confocal-microscopy confirmed markedly increased pulmonary expression of the Nox4 activating subunit p22phox accompanied by decreased perivascular PPARγ expression in lungs of nitrofen-exposed fetuses compared to controls.ConclusionTo our knowledge, the present study is the first to report increased Nox4 production in the pulmonary vasculature of nitrofen-induced CDH. Down-regulation of the PPARγ-signaling pathway may lead to increased superoxide production, resulting in pulmonary vascular dysfunction and contributing to pulmonary hypertension in the nitrofen-induced CDH model. PPARγ-activation inhibiting Nox4 production may therefore represent a potential therapeutic approach for the treatment of pulmonary hypertension in CDH.
PLOS ONE | 2013
Luis Alvarez; Billy Bourke; Gratiela Pircalabioru; Atanas Georgiev; Ulla G. Knaus; Simon Daff; Nicolae Corcionivoschi
Cytochrome P450s are b-heme-containing enzymes that are able to introduce oxygen atoms into a wide variety of organic substrates. They are extremely widespread in nature having diverse functions at both biochemical and physiological level. The genome of C. jejuni 81-176 encodes a single cytochrome P450 (Cj1411c) that has no close homologues. Cj1411c is unusual in its genomic location within a cluster involved in the biosynthesis of outer surface structures. Here we show that E. coli expressed and affinity-purified C. jejuni cytochrome P450 is lipophilic, containing one equivalent Cys-ligated heme. Immunoblotting confirmed the association of cytochrome P450 with membrane fractions. A Cj1411c deletion mutant had significantly reduced ability to infect human cells and was less able to survive following exposure to human serum when compared to the wild type strain. Phenotypically following staining with Alcian blue, we show that a Cj1411c deletion mutant produces significantly less capsular polysaccharide. This study describes the first known membrane-bound bacterial cytochrome P450 and its involvement in Campylobacter virulence.
Foodborne Pathogens and Disease | 2017
Carmel Kelly; Ozan Gundogdu; Gratiela Pircalabioru; Ada Cean; Pam Scates; Mark Linton; Laurette Pinkerton; Elizabeth Magowan; Lavinia Stef; Eliza Simiz; Ioan Pet; Sharon Stewart; Richard A. Stabler; Brendan W. Wren; Nick Dorrell; Nicolae Corcionivoschi
The current trend in reducing the antibiotic usage in animal production imposes urgency in the identification of novel biocides. The essential oil carvacrol, for example, changes the morphology of the cell and acts against a variety of targets within the bacterial membranes and cytoplasm, and our in vitro results show that it reduces adhesion and invasion of chicken intestinal primary cells and also biofilm formation. A trial was conducted to evaluate the effects of dietary supplementation of carvacrol at four concentrations (0, 120, 200, and 300 mg/kg of diet) on the performance of Lactobacillus spp., Escherichia coli, Campylobacter spp., and broilers. Each of the four diets was fed to three replicates/trial of 50 chicks each from day 0 to 35. Our results show that carvacrol linearly decreased feed intake, feed conversion rates and increased body weight at all levels of supplementation. Plate count analysis showed that Campylobacter spp. was only detected at 35 days in the treatment groups compared with the control group where the colonization occurred at 21 days. The absence of Campylobacter spp. at 21 days in the treatment groups was associated with a significant increase in the relative abundance of Lactobacillus spp. Also, carvacrol was demonstrated to have a significant effect on E. coli numbers in the cecum of the treatment groups, at all supplementation levels. In conclusion, this study shows for the first time that at different concentrations, carvacrol can delay Campylobacter spp., colonization of chicken broilers, by inducing changes in gut microflora, and it demonstrates promise as an alternative to the use of antibiotics.
Journal of Pediatric Surgery | 2013
Florian Friedmacher; Jan-Hendrik Gosemann; Naho Fujiwara; Luis Alvarez; Nicolae Corcionivoschi; Prem Puri
BACKGROUND/PURPOSE Pulmonary hypoplasia (PH) is a life-threatening condition of newborns presenting with congenital diaphragmatic hernia (CDH). Sprouty-2 functions as a key regulator of fibroblast growth factor receptor (FGFR) signalling in developing foetal lungs. It has been reported that FGFR-mediated alveolarization is disrupted in nitrofen-induced PH. Sprouty-2 knockouts show severe defects in lung morphogenesis similar to nitrofen-induced PH. Upon FGFR stimulation, Sprouty-2 is tyrosine-phosphorylated, which is essential for its physiological function during foetal lung development. We hypothesized that Sprouty-2 expression and tyrosine phosphorylation are altered in nitrofen-induced PH. METHODS Time-pregnant rats received either nitrofen or vehicle on gestation day 9 (D9). Foetal lungs were dissected on D18 and D21. Pulmonary Sprouty-2 gene and protein expression levels were analyzed by qRT-PCR, Western blotting and immunohistochemical staining. RESULTS Relative mRNA expression of Sprouty-2 was significantly decreased in hypoplastic lungs without CDH (0.1050±0.01 vs. 0.3125±0.01; P<.0001) and with CDH (0.1671±0.01 vs. 0.3125±0.01; P<.0001) compared to controls on D18. Protein levels of Sprouty-2 were markedly decreased in hypoplastic lungs on D18 with decreased tyrosine phosphorylation levels on D18 and D21 detected at the molecular weight of Sprouty-2 consistent with Sprouty-2 tyrosine phosphorylation. Sprouty-2 immunoreactivity was markedly decreased in hypoplastic lungs on D18 and D21. CONCLUSION Spatiotemporal alterations in pulmonary Sprouty-2 expression and tyrosine phosphorylation during the late stages of foetal lung development may interfere with FGFR-mediated alveolarization in nitrofen-induced PH.
Research in Veterinary Science | 2018
María Ugarte-Ruiz; Lucas Domínguez; Nicolae Corcionivoschi; Brendan W. Wren; Nick Dorrell; Ozan Gundogdu
Campylobacter jejuni is the leading cause of food-borne bacterial enteritis in humans, with contaminated poultry products considered the main source of infection. To survive the food chain, C. jejuni utilizes multiple defense mechanisms that counter oxidative and aerobic stresses. In this study, we phenotypically characterised 63 C. jejuni strains with oxidative stress survival and antimicrobial susceptibility testing to investigate correlations between these two phenotypes against the source of the strains and the presence of the MarR regulators RrpA and RrpB which have a role in regulating the response to oxidative and aerobic stress. C. jejuni strains isolated from meat and neck skin displayed the highest resistance to oxidative stress. In addition, C. jejuni strains that have an rrpA+rrpB- profile exhibit increased resistance to oxidative stress and to antimicrobials. Here we establish a preliminary link between the distribution of RrpA and RrpB and the increased resistance to antimicrobials. This study provides insight into how the genotypic make up of C. jejuni can influence the ability of the bacterium to survive within areas of high oxygen stress, such as the food chain, and subsequently can have a potential negative impact on human health.
Archive | 2018
Christina L. Swaggerty; Nicolae Corcionivoschi; Steven C. Ricke; Todd R. Callaway
Abstract Of the 700 serotypes of Escherichia coli, most are commensal; however, some range from mildly to highly pathogenic and can cause death. The disease-causing enterovirulent E. coli are classified as follows: enterotoxigenic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, and enterohemorrhagic E. coli (EHEC). EHEC are referred to as verocytotoxin E. coli or Shiga toxin–producing E. coli (STEC) but will be referred to as STEC. STEC are leading causes of foodborne illness in the United States resulting in 175,000 illness and 20 deaths per year. Historically, STEC illnesses are associated with handling/consuming contaminated or undercooked beef. There are several STEC, but E. coli O157:H7 is the most recognized. The gastrointestinal tracts of cattle are natural STEC reservoirs, and this coevolution has equipped them to survive as commensals. Managing the incidence and understanding the ecology of these foodborne pathogens are critical in minimizing future risks to humans.
Collaboration
Dive into the Nicolae Corcionivoschi's collaboration.
Banat University of Agricultural Sciences and Veterinary Medicine
View shared research outputs