Nicolae Popescu
Romanian Academy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolae Popescu.
Journal of Pure and Applied Algebra | 1999
Stefania Gabelli; Nicolae Popescu
Abstract In this paper we give an ideal-theoretical characterization of a distinguished class of Prufer domains, the class of generalized Dedekind domains. Namely, we prove that a Prufer domain R is generalized Dedekind if and only if the divisorial ideals of R are exactly the ideals of type JP l … P n , where J is an invertible fractional ideal and P l , …, P n are (incomparable) nonzero prime ideals of R . We also show that, when R is a generalized Dedekind domain, the group of fractional invertible ideals of R is isomorphic to the free abelian group generated by the set of nonzero prime ideals of R and a basis for it is given by a suitable set of two-generated ideals with prime radical.
Glasgow Mathematical Journal | 2010
Angel Popescu; Asim Naseem; Nicolae Popescu
Let K be a field of characteristic 0, which is algebraically closed to radicals. Let F = K (( X )) be the valued field of Laurent power series and let G = Aut ( F / K ). We prove that if L is a subfield of F , K ≠ L , such that L / K is a sub-extension of F / K and F / L is a Galois algebraic extension ( L / K is Galois coalgebraic in F / K ), then L is closed in F , F / L is a finite extension and Gal ( F / L ) is a finite cyclic group of G . We also prove that there is a one-to-one and onto correspondence between the set of all finite subgroups of G and the set of all Galois coalgebraic sub-extensions of F / K . Some other auxiliary results which are useful by their own are given.
Journal of Algebra | 1976
Nicolae Popescu; Constantin Vraciu
Les anneaux absolument plats commutatifs (ou en abrg il est bien connu que son spectre (voir [2]) est un espace topologique &park et totalement discontinu (espace de Book) et les anneaux locaux associks sont des corps. I1 sembleratit done a premikre vue, qu’un anneau a.p. est bien dktermini: par un espace de Boole et une famille de corps. Cet article se propose d’essayer d’Clucider cette question, c’est-g-dire d’apprkcier en quelle mesure un anneau a.p. est dCterminC par son spectre et par les cwps rksiduels assock. x cet effet nous avons introduit dans la 3kme section la notion de systkme de corps, qui, selon notre opinion, est susceptible de contribuer 2 clarifier la structure des anneaux a.p. La notion de K-anneau qui a ktk introduite, ne se distingue que de manikre form& du concept courant d’un nnneau a.p. Le ThCorkme 3.4 exprime les conditions nkcessaircs et suffisantes pour I’existence des K-anneaux dans un systkmc de corps dktermink. La notion d’extension d’un corps est g&nCralisCe dans le cas des anneaus a.p. dans lc cadre de la Section 4. C’est 12 kgalement qui nous avons introduit
Mathematische Zeitschrift | 2001
Vicentiu Pasol; Angel Popescu; Nicolae Popescu
Abstract. Let
Journal of Algebra | 2003
Angel Popescu; Nicolae Popescu; Alexandru Zaharescu
(K,\left| .\right| )
Communications in Algebra | 2002
Shigeru Kobayashi; Hidetoshi Marubayashi; Nicolae Popescu; Constantin Vraciu
be a perfect valued field,
Open Mathematics | 2008
Victor Alexandru; Nicolae Popescu; Alexandru Zaharescu
\overline{K}
Results in Mathematics | 2004
Angel Popescu; Nicolae Popescu; Alexandru Zaharescu
be an algebraic closure of
Results in Mathematics | 2003
Angel Popescu; Nicolae Popescu; Alexandru Zaharescu
K,
Archive | 2003
Angel Popescu; Nicolae Popescu; Alexandru Zaharescu