Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolai J. Wewer Albrechtsen is active.

Publication


Featured researches published by Nicolai J. Wewer Albrechtsen.


Endocrinology | 2015

An Analysis of Cosecretion and Coexpression of Gut Hormones From Male Rat Proximal and Distal Small Intestine

Berit Svendsen; Jens Pedersen; Nicolai J. Wewer Albrechtsen; Bolette Hartmann; Signe Toräng; Jens F. Rehfeld; Steen Seier Poulsen; Jens J. Holst

Gut endocrine cells are generally thought to have distinct localization and secretory products. Recent studies suggested that the cells are highly related and have potential to express more than one hormone. We studied the coexpression and cosecretion of gut hormones in separate segments of rat small intestine. We measured secretion of glucagon-like peptide-1 (GLP-1), peptide YY (PYY), neurotensin, glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (CCK) from proximal and distal half of the small intestine, isolated from male rats and perfused ex vivo. Hormone secretion was stimulated by bombesin, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, and peptones. Furthermore, tissue samples collected along the intestine were analyzed for expression, hormone content, and cell densities including colocalization. Most hormones responded to all three stimuli (but no GIP response to bombesin). GLP-1 secretion was similar from proximal and distal intestine, whereas PYY was secreted only from the distal half. CCK and GIP were mainly secreted proximally, whereas neurotensin was equally secreted from both parts. Cell densities, hormone concentrations, and expression patterns were generally parallel, with increasing values distally for GLP-1 and PYY, an exclusively proximal pattern for CCK, even distribution for neurotensin and GIP except for the most distal segments. PYY nearly always colocalized with GLP-1. Approximately 20% of GLP-1 cells colocalized with CCK and neurotensin, whereas GLP-1/GIP colocalization was rare. Our findings indicate that two L cell types exist, a proximal one secreting GLP-1 (and possibly CCK and neurotensin), and a distal one secreting GLP-1 and PYY. GIP seems to be secreted from cells that are not cosecreting other peptides.


European Journal of Endocrinology | 2014

Specificity and sensitivity of commercially available assays for glucagon and oxyntomodulin measurement in humans

Monika J. Bak; Nicolai J. Wewer Albrechtsen; Jens Pedersen; Bolette Hartmann; Mikkel Christensen; Tina Vilsbøll; Filip K. Knop; Carolyn F. Deacon; Lars O. Dragsted; Jens J. Holst

AIM To determine the specificity and sensitivity of assays carried out using commercially available kits for glucagon and/or oxyntomodulin measurements. METHODS Ten different assay kits used for the measurement of either glucagon or oxyntomodulin concentrations were obtained. Solutions of synthetic glucagon (proglucagon (PG) residues 3361), oxyntomodulin (PG residues 3369) and glicentin (PG residues 169) were prepared and peptide concentrations were verified by quantitative amino acid analysis and a processing-independent in-house RIA. Peptides were added to the matrix (assay buffer) supplied with the kits (concentration range: 1.25-300 pmol/l) and to human plasma and recoveries were determined. Assays yielding meaningful results were analysed for precision and sensitivity by repeated analysis and ability to discriminate low concentrations. RESULTS AND CONCLUSION Three assays were specific for glucagon (carried out using the Millipore (Billerica, MA, USA), Bio-Rad (Sundbyberg, Sweden), and ALPCO (Salem, NH, USA) and Yanaihara Institute (Shizuoka, Japan) kits), but none was specific for oxyntomodulin. The assay carried out using the Phoenix (Burlingame, CA, USA) glucagon kit measured the concentrations of all three peptides (total glucagon) equally. Sensitivity and precision were generally poor; the assay carried out using the Millipore RIA kit performed best with a sensitivity around 10 pmol/l. Assays carried out using the BlueGene (Shanghai, China), USCN LIFE (Wuhan, China) (oxyntomodulin and glucagon), MyBioSource (San Diego, CA, USA) and Phoenix oxyntomodulin kits yielded inconsistent results.


Diabetes | 2016

Evidence of Extrapancreatic Glucagon Secretion in Man.

Asger Lund; Jonatan I. Bagger; Nicolai J. Wewer Albrechtsen; Mikkel Christensen; Magnus F. Grøndahl; Bolette Hartmann; Elisabeth R. Mathiesen; Carsten Palnæs Hansen; Jan Storkholm; Gerrit van Hall; Jens F. Rehfeld; Daniel Hornburg; Felix Meissner; Matthias Mann; Steen Larsen; Jens J. Holst; Tina Vilsbøll; Filip K. Knop

Glucagon is believed to be a pancreas-specific hormone, and hyperglucagonemia has been shown to contribute significantly to the hyperglycemic state of patients with diabetes. This hyperglucagonemia has been thought to arise from α-cell insensitivity to suppressive effects of glucose and insulin combined with reduced insulin secretion. We hypothesized that postabsorptive hyperglucagonemia represents a gut-dependent phenomenon and subjected 10 totally pancreatectomized patients and 10 healthy control subjects to a 75-g oral glucose tolerance test and a corresponding isoglycemic intravenous glucose infusion. We applied novel analytical methods of plasma glucagon (sandwich ELISA and mass spectrometry–based proteomics) and show that 29–amino acid glucagon circulates in patients without a pancreas and that glucose stimulation of the gastrointestinal tract elicits significant hyperglucagonemia in these patients. These findings emphasize the existence of extrapancreatic glucagon (perhaps originating from the gut) in man and suggest that it may play a role in diabetes secondary to total pancreatectomy.


Endocrine connections | 2015

Stability of glucagon-like peptide 1 and glucagon in human plasma

Nicolai J. Wewer Albrechtsen; Monika Judyta Bak; Bolette Hartmann; Louise Wulff Christensen; Rune Ehrenreich Kuhre; Carolyn F. Deacon; Jens J. Holst

To investigate the stability of glucagon-like peptide 1 (GLP-1) and glucagon in plasma under short- and long-term storage conditions. Pooled human plasma (n=20), to which a dipeptidyl peptidase 4 (DPP4) inhibitor and aprotinin were added, was spiked with synthetic GLP-1 (intact, 7–36NH2 as well as the primary metabolite, GLP-1 9–36NH2) or glucagon. Peptide recoveries were measured in samples kept for 1 and 3 h at room temperature or on ice, treated with various enzyme inhibitors, after up to three thawing–refreezing cycles, and after storage at −20 and −80 °C for up to 1 year. Recoveries were unaffected by freezing cycles or if plasma was stored on ice for up to 3 h, but were impaired when samples stood at RT for more than 1 h. Recovery of intact GLP-1 increased by addition of a DPP4 inhibitor (no ice), but was not further improved by neutral endopeptidase 24.11 inhibitor or an inhibitor cocktail. GLP-1, but not glucagon, was stable for at least 1 year. Surprisingly, the recovery of glucagon was reduced by almost 50% by freezing compared with immediate analysis, regardless of storage time. Plasma handling procedures can significantly influence results of subsequent hormone analysis. Our data support addition of DPP4 inhibitor for GLP-1 measurement as well as cooling on ice of both GLP-1 and glucagon. Freeze–thaw cycles did not significantly affect stability of GLP-1 or glucagon. Long-term storage may affect glucagon levels regardless of storage temperature and results should be interpreted with caution.


Molecular Systems Biology | 2016

Proteomics reveals the effects of sustained weight loss on the human plasma proteome

Philipp E. Geyer; Nicolai J. Wewer Albrechtsen; Stefka Tyanova; Niklas Grassl; Eva Winning Iepsen; Julie Lundgren; Sten Madsbad; Jens J. Holst; Signe S. Torekov; Matthias Mann

Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individuals health state remain ill‐defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed by a year of weight maintenance. Using mass spectrometry‐based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual‐specific protein levels with wide‐ranging effects of losing weight on the plasma proteome reflected in 93 significantly affected proteins. The adipocyte‐secreted SERPINF1 and apolipoprotein APOF1 were most significantly regulated with fold changes of −16% and +37%, respectively (P < 10−13), and the entire apolipoprotein family showed characteristic differential regulation. Clinical laboratory parameters are reflected in the plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten‐protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly evaluates and monitors intervention in metabolic diseases.


Journal of Diabetes and Its Complications | 2015

Measurement of the incretin hormones: glucagon-like peptide-1 and glucose-dependent insulinotropic peptide.

Rune E. Kuhre; Nicolai J. Wewer Albrechtsen; Bolette Hartmann; Carolyn F. Deacon; Jens J. Holst

The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma concentrations of GLP-1 and GIP is often an important endpoint in both clinical and preclinical studies and, therefore, accurate measurement of these hormones is important. Here, we provide an overview of current approaches for the measurement of the incretin hormones, with particular focus on immunological methods.


Peptides | 2014

GLP-1 amidation efficiency along the length of the intestine in mice, rats and pigs and in GLP-1 secreting cell lines.

Rune E. Kuhre; Nicolai J. Wewer Albrechtsen; Johanne Agerlin Windeløv; Berit Svendsen; Bolette Hartmann; Jens J. Holst

XXX: Measurements of plasma concentrations of the incretin hormone GLP-1 are complex because of extensive molecular heterogeneity. This is partly due to a varying and incompletely known degree of C-terminal amidation. Given that virtually all GLP-1 assays rely on a C-terminal antibody, it is essential to know whether or not the molecule one wants to measure is amidated. We performed a detailed analysis of extractable GLP-1 from duodenum, proximal jejunum, distal ileum, caecum, proximal colon and distal colon of mice (n=9), rats (n=9) and pigs (n=8) and determined the degree of amidation and whether this varied with the six different locations. We also analyzed the amidation in 3 GLP-1 secreting cell lines (GLUTag, NCI-H716 and STC-1). To our surprise there were marked differences between the 3 species with respect to the concentration of GLP-1 in gut. In the mouse, concentrations increased continuously along the intestine all the way to the rectum, but were highest in the distal ileum and proximal colon of the rat. In the pig, very little or no GLP-1 was present before the distal ileum with similar levels from ileum to distal colon. In the mouse, GLP-1 was extensively amidated at all sampling sites, whereas rats and pigs on average had around 2.5 and 4 times higher levels of amidated compared to non-amidated GLP-1, although the ratio varied depending upon the location. GLUTag, NCI-H716 and STC-1 cells all exhibited partial amidation with 2-4 times higher levels of amidated compared to non-amidated GLP-1.


Diabetes | 2017

Glucagon and Amino Acids Are Linked in a Mutual Feedback Cycle: The Liver–α-Cell Axis

Jens J. Holst; Nicolai J. Wewer Albrechtsen; Jens Pedersen; Filip K. Knop

Glucagon is usually viewed as an important counterregulatory hormone in glucose metabolism, with actions opposing those of insulin. Evidence exists that shows glucagon is important for minute-to-minute regulation of postprandial hepatic glucose production, although conditions of glucagon excess or deficiency do not cause changes compatible with this view. In patients with glucagon-producing tumors (glucagonomas), the most conspicuous signs are skin lesions (necrolytic migratory erythema), while in subjects with inactivating mutations of the glucagon receptor, pancreatic swelling may be the first sign; neither condition is necessarily associated with disturbed glucose metabolism. In glucagonoma patients, amino acid turnover and ureagenesis are greatly accelerated, and low plasma amino acid levels are probably at least partly responsible for the necrolytic migratory erythema, which resolves after amino acid administration. In patients with receptor mutations (and in knockout mice), pancreatic swelling is due to α-cell hyperplasia with gross hypersecretion of glucagon, which according to recent groundbreaking research may result from elevated amino acid levels. Additionally, solid evidence indicates that ureagenesis, and thereby amino acid levels, is critically controlled by glucagon. Together, this constitutes a complete endocrine system; feedback regulation involving amino acids regulates α-cell function and secretion, while glucagon, in turn, regulates amino acid turnover.


Journal of Molecular Endocrinology | 2016

Peptide production and secretion in GLUTag, NCI-H716, and STC-1 cells: a comparison to native L-cells

Rune E. Kuhre; Nicolai J. Wewer Albrechtsen; Carolyn F. Deacon; Emilie Balk-Møller; Jens F. Rehfeld; Frank Reimann; Fiona M. Gribble; Jens J. Holst

GLUTag, NCI-H716, and STC-1 are cell lines that are widely used to study mechanisms underlying secretion of glucagon-like peptide-1 (GLP-1), but the extent to which they resemble native L-cells is unknown. We used validated immunoassays for 14 different hormones to analyze peptide content (lysis samples; n = 9 from different passage numbers) or peptide secretion in response to buffer (baseline), and after stimulation with 50 mM KCl or 10 mM glucose + 10 µM forskolin/3-isobutyl-1-methylxanthine (n = 6 also different passage numbers). All cell lines produced and processed proglucagon into GLP-1, GLP-2, glicentin, and oxyntomodulin in a pattern (prohormone convertase (PC)1/3 dependent) similar to that described for human gut. All three cell lines showed basal secretion of GLP-1 and GLP-2, which increased after stimulation. In contrast to freshly isolated murine L-cells, all cell lines also expressed PC2 and secreted large amounts of pancreatic glucagon. Neurotensin and somatostatin storage was low and secretion was not consistently increased by stimulation. STC-1 cells released more glucose-dependent insulinotropic polypeptide than GLP-1 at baseline (P < 0.01) and KCl elevated its secretion (P < 0.05). Peptide YY, which normally co-localizes with GLP-1 in distal L-cells, was not detected in any of the cell lines. GLUTag and STC-1 cells also expressed vasoactive intestinal peptide, but none expressed pancreatic polypeptide or insulin. GLUTag contained and secreted large amounts of CCK, while NCI-H716 did not store this peptide and STC-1 contained low amounts. Our results show that hormone production in cell line models of the L-cell has limited similarity to the natural L-cells.


EBioMedicine | 2016

Oxyntomodulin Identified as a Marker of Type 2 Diabetes and Gastric Bypass Surgery by Mass-spectrometry Based Profiling of Human Plasma

Nicolai J. Wewer Albrechtsen; Daniel Hornburg; Reidar Albrechtsen; Berit Svendsen; Signe Toräng; Sara L. Jepsen; Rune E. Kuhre; Marie Hansen; Charlotte Janus; Andrea Karen Floyd; Asger Lund; Tina Vilsbøll; Filip K. Knop; Henrik Vestergaard; Carolyn F. Deacon; Felix Meissner; Matthias Mann; Jens J. Holst; Bolette Hartmann

Low-abundance regulatory peptides, including metabolically important gut hormones, have shown promising therapeutic potential. Here, we present a streamlined mass spectrometry-based platform for identifying and characterizing low-abundance regulatory peptides in humans. We demonstrate the clinical applicability of this platform by studying a hitherto neglected glucose- and appetite-regulating gut hormone, namely, oxyntomodulin. Our results show that the secretion of oxyntomodulin in patients with type 2 diabetes is significantly impaired, and that its level is increased by more than 10-fold after gastric bypass surgery. Furthermore, we report that oxyntomodulin is co-distributed and co-secreted with the insulin-stimulating and appetite-regulating gut hormone glucagon-like peptide-1 (GLP-1), is inactivated by the same protease (dipeptidyl peptidase-4) as GLP-1 and acts through its receptor. Thus, oxyntomodulin may participate with GLP-1 in the regulation of glucose metabolism and appetite in humans. In conclusion, this mass spectrometry-based platform is a powerful resource for identifying and characterizing metabolically active low-abundance peptides.

Collaboration


Dive into the Nicolai J. Wewer Albrechtsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rune E. Kuhre

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Filip K. Knop

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Tina Vilsbøll

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jens Pedersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge