Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas B. Cowan is active.

Publication


Featured researches published by Nicolas B. Cowan.


Nature | 2007

A map of the day-night contrast of the extrasolar planet HD 189733b

Heather A. Knutson; David Charbonneau; Lori E. Allen; Jonathan J. Fortney; Eric Agol; Nicolas B. Cowan; Curtis S. Cooper; S. Thomas Megeath

‘Hot Jupiter’ extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun–Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet’s surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a ‘map’ of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 ± 33 K and a maximum brightness temperature of 1,212 ± 11 K at a wavelength of 8 μm, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 ± 6° before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 ± 24 s later than predicted, which may indicate a slightly eccentric orbit.


The Astrophysical Journal | 2009

Multiwavelength Constraints on the Day-Night Circulation Patterns of HD 189733b

Heather A. Knutson; David Charbonneau; Nicolas B. Cowan; Jonathan J. Fortney; Eric Agol; Gregory W. Henry; Mark E. Everett; Lori E. Allen

We present new Spitzer observations of the phase variation of the hot Jupiter HD 189733b in the MIPS 24 μm bandpass, spanning the same part of the planets orbit as our previous observations in the IRAC 8 μm bandpass (Knutson et al. 2007). We find that the minimum hemisphere-averaged flux from the planet in this bandpass is 76% ± 3% of the maximum flux; this corresponds to minimum and maximum hemisphere-averaged brightness temperatures of 984 ± 48 K and 1220 ± 47 K, respectively. The planet reaches its maximum flux at an orbital phase of 0.396 ± 0.022, corresponding to a hot region shifted 20°-30° east of the substellar point. Because tidally locked hot Jupiters would have enormous day-night temperature differences in the absence of winds, the small amplitude of the observed phase variation indicates that the planets atmosphere efficiently transports thermal energy from the day side to the night side at the 24 μm photosphere, leading to modest day-night temperature differences. The similarities between the 8 and 24 μm phase curves for HD 189733b lead us to conclude that the circulation on this planet behaves in a fundamentally similar fashion across the range of pressures sensed by these two wavelengths. One-dimensional radiative transfer models indicate that the 8 μm band should probe pressures 2-3 times greater than at 24 μm, although the uncertain methane abundance complicates the interpretation. If these two bandpasses do probe different pressures, it would indicate that the temperature varies only weakly between the two sensed depths, and hence that the atmosphere is not convective at these altitudes. We also present an analysis of the possible contribution of star spots to the time series at both 8 and 24 μm based on near-simultaneous ground-based observations and additional Spitzer observations. Accounting for the effects of these spots results in a slightly warmer night-side temperature for the planet in both bandpasses, but does not otherwise affect our conclusions.


The Astrophysical Journal | 2011

The Statistics of Albedo and Heat Recirculation on Hot Exoplanets

Nicolas B. Cowan; Eric Agol

If both the day-side and night-side effective temperatures of a planet can be measured, it is possible to estimate its Bond albedo, 0 0.8 ?m?to estimate day-side effective temperatures, T d, and thermal phase variations?when available?to estimate night-side effective temperature. We strongly rule out the null hypothesis of a single AB and ? for all 24 planets. If we allow each planet to have different parameters, we find that low Bond albedos are favored (AB 2400 K) have low ?, as opposed to the 18 cooler planets, which show a variety of recirculation efficiencies. This hints that the very hottest transiting giant planets are qualitatively different from the merely hot Jupiters. We propose an explanation of this trend based on how a planets radiative and advective times scale with temperature: both timescales are expected to be shorter for hotter planets, but the temperature dependence of the radiative timescale is stronger, leading to decreased heat recirculation efficiency.


The Astrophysical Journal | 2012

3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

Heather A. Knutson; Nikole K. Lewis; Jonathan J. Fortney; Adam Burrows; Nicolas B. Cowan; Eric Agol; S. Aigrain; David Charbonneau; Drake Deming; J.-M. Desert; Gregory W. Henry; Jonathan Langton; Gregory Laughlin

We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 μm, these data allow us to characterize the exoplanets emission spectrum as a function of planetary longitude and to search for local variations in its vertical thermal profile and atmospheric composition. We utilize an improved method for removing the effects of intrapixel sensitivity variations and robustly extracting phase curve signals from these data, and we calculate our best-fit parameters and uncertainties using a wavelet-based Markov Chain Monte Carlo analysis that accounts for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% ± 0.0061% in the 3.6 μm band and 0.0982% ± 0.0089% in the 4.5 μm band, corresponding to brightness temperature contrasts of 503 ± 21 K and 264 ± 24 K, respectively. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 μm, and we present new evidence indicating that the flux minimum observed in the 8 μm is likely caused by an overshooting effect in the 8 μm array. We obtain improved estimates for HD 189733bs dayside planet-star flux ratio of 0.1466% ± 0.0040% in the 3.6 μm band and 0.1787% ± 0.0038% in the 4.5 μm band, corresponding to brightness temperatures of 1328 ± 11 K and 1192 ± 9 K, respectively; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of one-dimensional radiative transfer models from Burrows et al. and conclude that fits to this planets dayside spectrum provide a reasonably accurate estimate of the amount of energy transported to the night side. Our 3.6 and 4.5 μm phase curves are generally in good agreement with the predictions of general circulation models for this planet from Showman et al., although we require either excess drag or slower rotation rates in order to match the locations of the measured maxima and minima in the 4.5, 8.0, and 24 μm bands. We find that HD 189733bs 4.5 μm nightside flux is 3.3σ smaller than predicted by these models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 μm absorption in this region. This result is consistent with our constraints on the planets transmission spectrum, which also suggest excess absorption in the 4.5 μm band at the day-night terminator.


Monthly Notices of the Royal Astronomical Society | 2012

Measures of galaxy environment – I. What is ‘environment’?

Stuart I. Muldrew; Darren J. Croton; Ramin A. Skibba; Frazer R. Pearce; H. B. Ann; Ivan K. Baldry; Sarah Brough; Yun-Young Choi; Christopher J. Conselice; Nicolas B. Cowan; Anna Gallazzi; Meghan E. Gray; Ruth Grützbauch; I-hui Li; Changbom Park; S. V. Pilipenko; Bret J. Podgorzec; Aaron S. G. Robotham; David J. Wilman; Xiaohu Yang; Youcai Zhang; Stefano Zibetti

The influence of a galaxy’s environment on its evolution has been studied and compared extensively in the literature, although differing techniques are often used to define environment. Most methods fall into two broad groups: those that use nearest neighbours to probe the underlying density field and those that use fixed apertures. The differences between the two inhibit a clean comparison between analyses and leave open the possibility that, even with the same data, different properties are actually being measured. In this work we apply twenty published environment definitions to a common mock galaxy catalogue constrained to look like the local Universe. We find that nearest neighbour-based measures best probe the internal densities of high-mass haloes, while at low masses the inter-halo separation dominates and acts to smooth out local density variations. The resulting correlation also shows that nearest neighbour galaxy environment is largely independent of dark matter halo mass. Conversely, aperture-based methods that probe super-halo scales accurately identify high-density regions corresponding to high mass haloes. Both methods show how galaxies in dense environments tend to be redder, with the exception of the largest apertures, but these are the strongest at recovering the background dark matter environment. We also warn against using photometric redshifts to define environment in all but the densest regions. When considering environment there are two regimes: the ‘local environment’ internal to a halo best measured with nearest neighbour and ‘large-scale environment’ external to a halo best measured with apertures. This leads to the conclusion that there is no universal environment measure and the most suitable method depends on the scale being probed.


The Astrophysical Journal | 2013

STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

Jun Yang; Nicolas B. Cowan; Dorian S. Abbot

The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.


The Astrophysical Journal | 2012

THERMAL PHASE VARIATIONS OF WASP-12B: DEFYING PREDICTIONS

Nicolas B. Cowan; Pavel Machalek; Bryce Croll; Louis M. Shekhtman; Adam Burrows; Drake Deming; Tom Greene; Joseph L. Hora

We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 μm. This extremely inflated hot Jupiter is thought to be overflowing its Roche lobe, undergoing mass loss and accretion onto its host star, and has been claimed to have a C/O ratio in excess of unity. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large-amplitude phase variations, combined with the planets previously measured dayside spectral energy distribution, are indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared—(Rp /R *)2 = 0.0123(3) and 0.0111(3) at 3.6 and 4.5 μm, respectively—indicate that the atmospheric opacity is greater at 3.6 than at 4.5 μm, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies: F day/F * = 0.0038(4) and 0.0039(3) at 3.6 and 4.5 μm, respectively. We do not detect ellipsoidal variations at 3.6 μm, but our parameter uncertainties—estimated via prayer-bead Monte Carlo—keep this non-detection consistent with model predictions. At 4.5 μm, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planets elongated shape, these variations imply a 3:2 ratio for the planets longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 μm ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best-fit 4.5 μm transit depth becomes commensurate with the 3.6 μm depth, within the uncertainties. The relative transit depths are then consistent with a solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 μm eclipse depth, consistent with a solar composition and modest temperature inversion. We suggest future observations that could distinguish between these two scenarios.


Monthly Notices of the Royal Astronomical Society | 2007

Hot nights on extrasolar planets : mid-infrared phase variations of hot Jupiters

Nicolas B. Cowan; Eric Agol; David Charbonneau

We present results from Spitzer Space Telescope observations of the mid-infrared phase variations of three short-period extrasolar planetary systems: HD 209458, HD 179949 and 51 Peg. We gathered Infrared Array Camera (IRAC) images in multiple wavebands (3.6 or 4.5 and 8 μm) at eight phases of each planets orbit. We find the uncertainty in relative photometry from one epoch to the next to be significantly larger than the photon counting error at 3.6 and 4.5 μm. We are able to place 2σ upper limits of only ∼2 per cent on the phase variations at these wavelengths. At 8 μm, the epoch-to-epoch systematic uncertainty is comparable to the photon counting noise and we detect a phase function for HD 179949 which is in phase with the planets orbit and with a relative peak-to-trough amplitude of 0.001 41 (33). Assuming that HD 179949b has a radius R j < R p < 1.2R j , it must recirculate less than 21 per cent of incident stellar energy to its night side at the 1 σ level (less than 26 per cent at the 2σ level, where 50 per cent signifies full recirculation). If the planet has a small Bond albedo, it must have a mass less than 2.4M j (1σ). We do not detect phase variations for the other two systems but we do place the following 2σ upper limits: 0.0007 for 51 Peg and 0.0015 for HD 209458. Due to its edge-on configuration, the upper limit for HD 209458 translates, with appropriate assumptions about Bond albedo, into a lower limit on the recirculation occuring in the planets atmosphere. HD 209458b must recirculate at least 32 per cent of incident stellar energy to its night side, at the 1σ level (at least 16 per cent at the 2σ level), which is consistent with other constraints on recirculation from the depth of secondary eclipse depth at 8 μm and the low optical albedo. These data indicate that different hot Jupiter planets may experience different recirculation efficiencies.


The Astrophysical Journal | 2013

ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

Nikole K. Lewis; Heather A. Knutson; Nicolas B. Cowan; Gregory Laughlin; Adam Burrows; Drake Deming; Justin R. Crepp; Kenneth J. Mighell; Eric Agol; G. Á. Bakos; David Charbonneau; J.-M. Desert; Debra A. Fischer; Jonathan J. Fortney; J. D. Hartman; Sasha Hinkley; Andrew W. Howard; John Asher Johnson; Melodie Kao; Jonathan Langton; Geoffrey W. Marcy

We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and 8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%, 0.071%^(+0.029%)_(-0.013%), and 0.1392% ± 0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2bs atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 ± 0.00048) and argument of periapse (ω = 188°.09 ± 0°.39) of HAT-P-2bs orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of another substellar companion in the HAT-P-2 system, which could have caused HAT-P-2b to migrate inward to its present-day orbit via the Kozai mechanism.


The Astrophysical Journal | 2009

THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b

Heather A. Knutson; David Charbonneau; Nicolas B. Cowan; Jonathan J. Fortney; Eric Agol; Gregory W. Henry

We monitor the star HD 149026 and its Saturn-mass planet at 8.0 μm over slightly more than half an orbit using the Infrared Array Camera on the Spitzer Space Telescope. We find an increase of 0.0227% ± 0.0066% (3.4σ significance) in the combined planet-star flux during this interval. The minimum flux from the planet is 45% ± 19% of the maximum planet flux, corresponding to a difference in brightness temperature of 480 ± 140 K between the two hemispheres. We derive a new secondary eclipse depth of 0.0411% ± 0.0076% in this band, corresponding to a dayside brightness temperature of 1440 ± 150 K. Our new secondary eclipse depth is half that of a previous measurement (3.0σ difference) in this same bandpass by Harrrington et al. We re-fit the Harrrington et al. data and obtain a comparably good fit with a smaller eclipse depth that is consistent with our new value. In contrast to earlier claims, our new eclipse depth suggests that this planets dayside emission spectrum is relatively cool, with an 8 μm brightness temperature that is less than the maximum planet-wide equilibrium temperature. We measure the interval between the transit and secondary eclipse and find that that the secondary eclipse occurs 20.9^(+7.2)_(–6.5) minutes earlier (2.9σ) than predicted for a circular orbit, a marginally significant result. This corresponds to ecos(ω) = –0.0079^(+0.0027)_(–0.0025), where e is the planets orbital eccentricity and ω is the argument of pericenter.

Collaboration


Dive into the Nicolas B. Cowan's collaboration.

Top Co-Authors

Avatar

Eric Agol

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Heather A. Knutson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikole K. Lewis

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-M. Desert

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge