Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Barbier is active.

Publication


Featured researches published by Nicolas Barbier.


New Phytologist | 2010

Remote sensing detection of droughts in Amazonian forest canopies

Liana O. Anderson; Yadvinder Malhi; Luiz E. O. C. Aragão; Richard J. Ladle; Egidio Arai; Nicolas Barbier; Oliver L. Phillips

*Remote sensing data are a key tool to assess large forested areas, where limitations such as accessibility and lack of field measurements are prevalent. Here, we have analysed datasets from moderate resolution imaging spectroradiometer (MODIS) satellite measurements and field data to assess the impacts of the 2005 drought in Amazonia. *We combined vegetation indices (VI) and climatological variables to evaluate the spatiotemporal patterns associated with the 2005 drought, and explore the relationships between remotely-sensed indices and forest inventory data on tree mortality. *There were differences in results based on c4 and c5 MODIS products. C5 VI showed no spatial relationship with rainfall or aerosol optical depth; however, distinct regions responded significantly to the increased radiation in 2005. The increase in the Enhanced VI (EVI) during 2005 showed a significant positive relationship (P < 0.07) with the increase of tree mortality. By contrast, the normalized difference water index (NDWI) exhibited a significant negative relationship (P < 0.09) with tree mortality. *Previous studies have suggested that the increase in EVI during the 2005 drought was associated with a positive response of forest photosynthesis to changes in the radiation income. We discuss the evidence that this increase could be related to structural changes in the canopy.


Ecological Applications | 2012

Assessing aboveground tropical forest biomass using Google Earth canopy images

Pierre Ploton; Raphaël Pélissier; Christophe Proisy; Théo Flavenot; Nicolas Barbier; S. N. Rai; Pierre Couteron

Reducing Emissions from Deforestation and Forest Degradation (REDD) in efforts to combat climate change requires participating countries to periodically assess their forest resources on a national scale. Such a process is particularly challenging in the tropics because of technical difficulties related to large aboveground forest biomass stocks, restricted availability of affordable, appropriate remote-sensing images, and a lack of accurate forest inventory data. In this paper, we apply the Fourier-based FOTO method of canopy texture analysis to Google Earths very-high-resolution images of the wet evergreen forests in the Western Ghats of India in order to (1) assess the predictive power of the method on aboveground biomass of tropical forests, (2) test the merits of free Google Earth images relative to their native commercial IKONOS counterparts and (3) highlight further research needs for affordable, accurate regional aboveground biomass estimations. We used the FOTO method to ordinate Fourier spectra of 1436 square canopy images (125 x 125 m) with respect to a canopy grain texture gradient (i.e., a combination of size distribution and spatial pattern of tree crowns), benchmarked against virtual canopy scenes simulated from a set of known forest structure parameters and a 3-D light interception model. We then used 15 1-ha ground plots to demonstrate that both texture gradients provided by Google Earth and IKONOS images strongly correlated with field-observed stand structure parameters such as the density of large trees, total basal area, and aboveground biomass estimated from a regional allometric model. Our results highlight the great potential of the FOTO method applied to Google Earth data for biomass retrieval because the texture-biomass relationship is only subject to 15% relative error, on average, and does not show obvious saturation trends at large biomass values. We also provide the first reliable map of tropical forest aboveground biomass predicted from free Google Earth images.


Scientific Reports | 2015

Seeing Central African forests through their largest trees

Jean-François Bastin; Nicolas Barbier; Maxime Réjou-Méchain; Adeline Fayolle; Sylvie Gourlet-Fleury; Danae Maniatis; T. de Haulleville; Fidèle Baya; Hans Beeckman; D. Beina; Pierre Couteron; G. Chuyong; Gilles Dauby; Jean-Louis Doucet; Vincent Droissart; Marc Dufrêne; Corneille Ewango; Jean-François Gillet; C. H. Gonmadje; Terese B. Hart; T. Kavali; David Kenfack; Moses Libalah; Yadvinder Malhi; Jean-Remy Makana; Raphaël Pélissier; Pierre Ploton; A. Serckx; Bonaventure Sonké; Tariq Stevart

Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large, often poorly accessible territories. Here we show that the above-ground biomass (AGB) of the whole forest can be predicted from a few large trees and that the relationship is proved strikingly stable in 175 1-ha plots investigated across 8 sites spanning Central Africa. We designed a generic model predicting AGB with an error of 14% when based on only 5% of the stems, which points to universality in forest structural properties. For the first time in Africa, we identified some dominant species that disproportionally contribute to forest AGB with 1.5% of recorded species accounting for over 50% of the stock of AGB. Consequently, focusing on large trees and dominant species provides precise information on the whole forest stand. This offers new perspectives for understanding the functioning of tropical forests and opens new doors for the development of innovative monitoring strategies.


Journal of Theoretical Biology | 2009

Deeply gapped vegetation patterns: On crown/root allometry, criticality and desertification

René Lefever; Nicolas Barbier; Pierre Couteron; Olivier Lejeune

The dynamics of vegetation is formulated in terms of the allometric and structural properties of plants. Within the framework of a general and yet parsimonious approach, we focus on the relationship between the morphology of individual plants and the spatial organization of vegetation populations. So far, in theoretical as well as in field studies, this relationship has received only scant attention. The results reported remedy to this shortcoming. They highlight the importance of the crown/root ratio and demonstrate that the allometric relationship between this ratio and plant development plays an essential part in all matters regarding ecosystems stability under conditions of limited soil (water) resources. This allometry determines the coordinates in parameter space of a critical point that controls the conditions in which the emergence of self-organized biomass distributions is possible. We have quantified this relationship in terms of parameters that are accessible by measurement of individual plant characteristics. It is further demonstrated that, close to criticality, the dynamics of plant populations is given by a variational Swift-Hohenberg equation. The evolution of vegetation in response to increasing aridity, the conditions of gapped pattern formation and the conditions under which desertification takes place are investigated more specifically. It is shown that desertification may occur either as a local desertification process that does not affect pattern morphology in the course of its unfolding or as a gap coarsening process after the emergence of a transitory, deeply gapped pattern regime. Our results amend the commonly held interpretation associating vegetation patterns with a Turing instability. They provide a more unified understanding of vegetation self-organization within the broad context of matter order-disorder transitions.


Ecological Monographs | 2012

Determinants and dynamics of banded vegetation pattern migration in arid climates

Vincent Deblauwe; Pierre Couteron; Jan Bogaert; Nicolas Barbier

Dense vegetation bands aligned to contour levels and alternating at regular intervals with relatively barren interbands have been reported at the margins of all tropical deserts. Since their discovery in the 1950s, it has been supposed that these vegetation bands migrate upslope, forming a space-time cyclic pattern. Evidence to date has been relatively sparse and indirect, and observations have remained conflicting. Unequivocal photographic evidence of upslope migration (a few decimeters per year) is provided here for three independent dryland areas exhibiting periodic banded pattern: (1) the U.S. northeastern Chihuahuan Desert, (2) the Somalian Haud, and (3) the Mediterranean steppes of eastern Morocco. Migration speeds, averaged through time and space using Fourier cross-spectral analysis, are shown to be directly proportional to pattern scale (wavelength). A sequence of aerial photographs of the Chihuahuan Desert showed that migration was not continuous, but intermittent in response to fluctuating weather regimes. The rates at which bands expanded upslope and contracted downslope were better predicted by the change in annual rainfall than by its average level. However, the migration of banded patterns cannot be considered as systematic because in our observations of three other banded systems located in the Somalian Haud, central Australia, and western New South Wales, migration was undetectable at the available image resolution. In each of the six sites under study, the modal value of band orientation axes was verified to be approximately orthogonal to the steepest slope. Our results underscore the importance of taking both the spatial structure and the past climate sequence into account for understanding vegetation dynamics in arid to semiarid ecosystems. In addition, we show how Fourier spectral analysis applied to historical series of optical images can serve to quantify landscape dynamics at a decadal time scale.


Global Change Biology | 2017

Allometric equations for integrating remote sensing imagery into forest monitoring programmes

Tommaso Jucker; John P. Caspersen; Jérôme Chave; Cécile Antin; Nicolas Barbier; Frans Bongers; Michele Dalponte; Karin Y. van Ewijk; David I. Forrester; Matthias Haeni; Steven I. Higgins; Robert J. Holdaway; Yoshiko Iida; Craig G. Lorimer; Peter L. Marshall; Stéphane Momo; Glenn R. Moncrieff; Pierre Ploton; Lourens Poorter; Kassim Abd Rahman; Michael Schlund; Bonaventure Sonké; Frank J. Sterck; Anna T. Trugman; Vladimir Usoltsev; Mark C. Vanderwel; Peter Waldner; Beatrice Wedeux; Christian Wirth; Hannsjörg Wöll

Abstract Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able – for the first time – to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed – specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the worlds forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large‐scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.


Ecological Applications | 2014

Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach.

Jean-François Bastin; Nicolas Barbier; Pierre Couteron; Benoît Adams; Aurélie Shapiro; Jan Bogaert; Charles De Cannière

In the context of the reduction of greenhouse gas emissions caused by deforestation and forest degradation (the REDD+ program), optical very high resolution (VHR) satellite images provide an opportunity to characterize forest canopy structure and to quantify aboveground biomass (AGB) at less expense than methods based on airborne remote sensing data. Among the methods for processing these VHR images, Fourier textural ordination (FOTO) presents a good method to detect forest canopy structural heterogeneity and therefore to predict AGB variations. Notably, the method does not saturate at intermediate AGB values as do pixelwise processing of available space borne optical and radar signals. However, a regional-scale application requires overcoming two difficulties: (1) instrumental effects due to variations in sun–scene–sensor geometry or sensor-specific responses that preclude the use of wide arrays of images acquired under heterogeneous conditions and (2) forest structural diversity including monodominant or open canopy forests, which are of particular importance in Central Africa. In this study, we demonstrate the feasibility of a rigorous regional study of canopy texture by harmonizing FOTO indices of images acquired from two different sensors (Geoeye-1 and QuickBird-2) and different sun–scene–sensor geometries and by calibrating a piecewise biomass inversion model using 26 inventory plots (1 ha) sampled across very heterogeneous forest types. A good agreement was found between observed and predicted AGB (residual standard error [RSE] = 15%; R2 = 0.85; P < 0.001) across a wide range of AGB levels from 26 Mg/ha to 460 Mg/ha, and was confirmed by cross validation. A high-resolution biomass map (100-m pixels) was produced for a 400-km2 area, and predictions obtained from both imagery sources were consistent with each other (r = 0.86; slope = 1.03; intercept = 12.01 Mg/ha). These results highlight the horizontal structure of forest canopy as a powerful descriptor of the entire forest stand structure and heterogeneity. In particular, we show that quantitative metrics resulting from such textural analysis offer new opportunities to characterize the spatial and temporal variation of the structure of dense forests and may complement the toolbox used by tropical forest ecologists, managers or REDD+ national monitoring, reporting and verification bodies.


Annals of Forest Science | 2012

Linking canopy images to forest structural parameters : potential of a modeling framework

Nicolas Barbier; Pierre Couteron; Jean-Philippe Gastelly-Etchegorry; Christophe Proisy

Abstract• ContextRemote sensing methods, and in particular very high (metric) resolution optical imagery, are essential assets to obtain forest structure data that cannot be measured from the ground because they are too difficult to measure or because the areas to sample are too large or inaccessible.• AimTo understand what kind of, and how precisely and accurately, information on forest structure can be inverted from RS data, we propose a modeling framework allowing to produce forest canopy images for any type of forest based on basic inventory data.• MethodsThis framework combines a simple 3D forest model named “Allostand,” based on empirically or theoretically derived diameter at breast height distributions and allometry rules, with a well-established radiative transfer model, discrete anisotropic radiative transfer.• ResultsResulting simulated images appear of good realism for textural analysis. The potential of the approach for the development of quantitative methods to assess forest structure, dynamics, matter and energy budgets, and degradation, including in tropical contexts, is illustrated emphasizing broad-leaved natural forests.• ConclusionConsequently, this theoretical framework appears as a valuable component for developing inversion methods from canopy images and studying their sensitivity to structural and instrumental effects.


International Journal of Forestry Research | 2011

Evaluating the Potential of Commercial Forest Inventory Data to Report on Forest Carbon Stock and Forest Carbon Stock Changes for REDD+ under the UNFCCC

Danae Maniatis; Yadvinder Malhi; Laurent Saint André; Danilo Mollicone; Nicolas Barbier; Sassan Saatchi; Matieu Henry; Laurent Tellier; Mathieu Schwartzenberg; Lee White

In the context of the adoption at the 16th Conference of the Parties in 2010 on the REDD+ mitigation mechanism, it is important to obtain reliable data on the spatiotemporal variation of forest carbon stocks and changes (called Emission Factor, EF). A re-occurring debate in estimating EF for REDD+ is the use of existing field measurement data. We provide an assessment of the use of commercial logging inventory data and ecological data to estimate a conservative EF (REDD+ phase 2) or to report on EF following IPCC Guidance and Guidelines (REDD+ phase 3). The data presented originate from five logging companies dispersed over Gabon, totalling 2,240 plots of 0.3 hectares.We distinguish three Forest Types (FTs) in the dataset based on floristic conditions. Estimated mean aboveground biomass (AGB) in the FTs ranges from 312 to 333 Mg ha−1. A 5% accuracy is reached with the number of plots put in place for the FTs and a low sampling uncertainty obtained (± 10 to 13 Mg ha−1). The data could be used to estimate a conservative EF in REDD+ phase 2 and only partially to report on EF following tier 2 requirements for a phase 3.


Remote Sensing | 2014

Canopy height estimation in French Guiana with LiDAR ICESat/GLAS data using principal component analysis and random forest regressions

Ibrahim Fayad; Nicolas Baghdadi; Jean Stéphane Bailly; Nicolas Barbier; Valéry Gond; Mahmoud El Hajj; Frederic Fabre; Bernard Bourgine

Estimating forest canopy height from large-footprint satellite LiDAR waveforms is challenging given the complex interaction between LiDAR waveforms, terrain, and vegetation, especially in dense tropical and equatorial forests. In this study, canopy height in French Guiana was estimated using multiple linear regression models and the Random Forest technique (RF). This analysis was either based on LiDAR waveform metrics extracted from the GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data and terrain information derived from the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model) or on Principal Component Analysis (PCA) of GLAS waveforms. Resultsshow that the best statistical model for estimating forest height based on waveform metrics and digital elevation data is a linear regression of waveform extent, trailing edge extent, and terrain index (RMSE of 3.7 m). For the PCA based models, better canopy height estimation results were observed using a regression model that incorporated both the first 13 principal components (PCs) and the waveform extent (RMSE = 3.8 m). Random Forest regressions revealed that the best configuration for canopy height estimation used all the following metrics: waveform extent, leading edge, trailing edge, and terrain index (RMSE = 3.4 m). Waveform extent was the variable that best explained canopy height, with an importance factor almost three times higher than those for the other three metrics (leading edge, trailing edge, and terrain index). Furthermore, the Random Forest regression incorporating the first 13 PCs and the waveform extent had a slightly-improved canopy height estimation in comparison to the linear model, with an RMSE of 3.6 m. In conclusion, multiple linear regressions and RF regressions provided canopy height estimations with similar precision using either LiDAR metrics or PCs. However, a regression model (linear regression or RF) based on the PCA of waveform samples with waveform extent information is an interesting alternative for canopy height estimation as it does not require several metrics that are difficult to derive from GLAS waveforms in dense forests, such as those in French Guiana.

Collaboration


Dive into the Nicolas Barbier's collaboration.

Top Co-Authors

Avatar

Pierre Couteron

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Deblauwe

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Christophe Proisy

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphaël Pélissier

French Institute of Pondicherry

View shared research outputs
Top Co-Authors

Avatar

Pierre Ploton

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Olivier Lejeune

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Vincent Droissart

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

David Kenfack

Smithsonian Tropical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge