Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Bélanger is active.

Publication


Featured researches published by Nicolas Bélanger.


Optics Express | 2005

Nonreciprocal waveguide Bragg gratings.

Mykola Kulishov; Jacques M. Laniel; Nicolas Bélanger; José Azaña; David V. Plant

The use of a complex short-period (Bragg) grating which combines matched periodic modulations of refractive index and loss/gain allows asymmetrical mode coupling within a contra-directional waveguide coupler. Such a complex Bragg grating exhibits a different behavior (e.g. in terms of the reflection and transmission spectra) when probed from opposite ends. More specifically, the grating has a single reflection peak when used from one end, but it is transparent (zero reflection) when used from the opposite end. In this paper, we conduct a systematic analytical and numerical analysis of this new class of Bragg gratings. The spectral performance of these, so-called nonreciprocal gratings, is first investigated in detail and the influence of device parameters on the transmission spectra of these devices is also analyzed. Our studies reveal that in addition to the nonreciprocal behavior, a nonreciprocal Bragg grating exhibits a strong amplification at the resonance wavelength (even with zero net-gain level in the waveguide) while simultaneously providing higher wavelength selectivity than the equivalent index Bragg grating. However, it is also shown that in order to achieve non-reciprocity in the device, a very careful adjustment of the parameters corresponding to the index and gain/loss gratings is required.


Optics Express | 2005

Trapping light in a ring resonator using a grating-assisted coupler with asymmetric transmission

Mykola Kulishov; Jacques M. Laniel; Nicolas Bélanger; David V. Plant

A recently proposed concept suggests that a matched periodic modulation of both the refractive index and the gain/loss of the media breaks the coupling symmetry of the two co-propagating modes and allows only a unidirectional coupling from the i-th mode to j-the mode but not the opposite. This concept has been used to design a ring resonator coupled through a complex grating composed of both real (index) and imaginary (loss/gain) parts according to Euler relation: n = n0 exp(-jkx) = n0 (cos(kx) - j sin(kx)). Such asymmetrical coupling allows light to be coupled into the ring without letting it out. We present a detailed theoretical analysis of the ring resonator in the linear regime, and we investigate its linear temporal dynamics. Three possible states of the complex grating leads to the possibility of developing a dynamic optical memory cell where, for example, a data modulated train of optical pulses can be stored. This data can be accessed without destroying it, and can also be erased thus permitting the storage of a new bit. Finally, the ring can be used for pulse retiming.


New Forests | 2009

Competition control in juvenile hybrid poplar plantations across a range of site productivities in central Saskatchewan, Canada.

Bradley D. Pinno; Nicolas Bélanger

The response of hybrid poplar plantations established on former agricultural land in Saskatchewan to competition from weeds on a range of site productivities was studied. The short-term impact of competition control on the growth of juvenile trees and how tree responses to competition control differed across the productivity gradient was of particular interest, as was the determination of which resource was most highly competed for and was most important in determining tree growth. Eight sets of paired plots in juvenile hybrid poplar plantations were established in central Saskatchewan across a range of site productivities. In each pair, one plot had complete weed control (weed-free) while in the other plot weeds were allowed to grow. The best soil predictor of tree growth was soil texture, represented by a combination of the percentage silt and clay, with finer textures showing better growth. Competition control significantly increased tree growth on all sites with the benefit being greatest on the higher productivity sites. Soil water appeared to be highly competed for between trees and weeds and was a dominant resource controlling growth. For soil nutrients, nitrogen and phosphorous were highly competed for between trees and weeds. However, leaf phosphorous concentration of the weed-free plots had a strong positive relation to tree growth while nitrogen did not, indicating that when trees are free of competition they can access sufficient nitrogen from these soils.


Environmental Modelling and Software | 2002

Simulation of soil chemistry and nutrient availability in a forested ecosytem of southern Quebec. Part II. Application of the SAFE model

Nicolas Bélanger; François Courchesne; Benoît Côté; Per Warfvinge; William H. Hendershot

The dynamic soil model SAFE was calibrated and validated in a small hardwood forest of southern Quebec as a function of its ability to reproduce current soil chemistry and similar pre-industrial soil conditions despite the difference in forest history. SAFE was relatively accurate for reproducing soil chemistry, but comparison of pre-industrial soil conditions between unburned and burned stands casts doubt as to its applicability at sites where specific processes may be involved in nutrient cycling, e.g. the immobilization of N by microbes. Simulated soil chemistry in the unburned zone reinforced the conclusions of a few historical studies which support the hypothesis that acid-sensitive forest sites of northeastern USA underwent significant acidification when major inputs of acidity from the atmosphere occurred, i.e. during the 1930-1980 time span. Model projections in the mineral soil suggest that a new steady-state should be reached in the 21st century assuming no harvest, but that this equilibrium is broken if timber harvesting is done. Model output also suggests that cation nutrient deficiencies could occur in the long-term, but future Al phytotoxic responses are unlikely to occur due to a relatively high projected pH. Finally, it was demonstrated that the time-series files of nutrient cycling should be prepared with care as they can be the source of some abnormalities in model calibration. (Less)


Environmental Modelling and Software | 2002

Simulation of soil chemistry and nutrient availability in a forested ecosystem of southern Quebec - I. Reconstruction of the time-series files of nutrient cycling using the MAKEDEP model

Nicolas Bélanger; Benoît Côté; François Courchesne; Per Warfvinge; William H. Hendershot

The MAKEDEP model is used to reconstruct the time-series input files of deposition, forest growth, uptake and litterfall needed to run the dynamic biogeochemical model SAFE. The amounts and timing of N made available for tree growth is what determines most of the model output. In this paper, the sensitivity Of MAKEDEP to various amounts and timing of N availability, including increased supplies of N prior to air pollution assuming increased biological N-2 fixation, was assessed in a small hardwood stand of southern Quebec. The scenarios of N cycling were validated for burned and unburned conditions based on the simulated tree growth and N leaching rates as well as the models ability to recreate the trends in atmospheric deposition of major ions in northeastern North America. The N leaching rates were calculated as the residual component of all simulated processes acting as sources and sinks of N. The N availability scenarios that subtracted/added 5 mmol m(-2) yr(-1) of NH4 in the unburned and burned conditions, respectively, recreated N leaching rates and tree biomass with the most precision. Modifying the amounts of N made available prior to air pollution was also necessary for the trees to grow to reasonable values before 1900. Historical trends of deposition were linked to the changes in the continental emissions in northeastern North America. Observational data for 30 years at the Hubbard Brook Experimental Forest, New Hampshire, showed convergent trends for most ions with the deposition trends simulated with MAKEDEP. (Less)


Canadian Journal of Soil Science | 2010

Influence of landscape on the apportionment of Ca nutrition in a Boreal Shield forest of Saskatchewan(Canada) using 87Sr/86Sr as a tracer

Nicolas Bélanger; Chris Holmden

A 87Sr/86Sr tracer technique was used to apportion the supply of calcium (Ca) between atmospheric deposition and soil mineral weathering in a pristine Boreal Shield forest of northern Saskatchewan. To assess the impact of landscape variability on soil mineral weathering 87Sr/86Sr ratios, the watershed was divided into six study plots at low, middle, and high elevations along two toposequences - one consisting of mixed woods and the other consisting of black spruce. Apportionment analysis shows that none of the trees in the study plots depend entirely on soil mineral weathering as a source of Ca. Calcium pools in trees are shifted towards the atmospheric end-member (31-98%), probably because of the low soil mineral weathering fluxes combined with relatively high atmospheric deposition fluxes. These results need to be considered as the consequence of buildup and recycling of atmospherically derived Ca in the soil-vegetation system rather than the direct and large use of current atmospheric Ca inputs by the ...


Soil & Sediment Contamination | 2004

Column Leaching Using Dry Soil to Estimate Solid-Solution Partitioning Observed in Zero-Tension Lysimeters. 1. Method Development

J D MacDonald; Nicolas Bélanger; William H. Hendershot

In order to understand the reactions taking place between the soil solid phase and the soil solution, we require knowledge of the chemistry of the soil solution as it occurs in the field. This knowledge allows us to conduct experiments with environmentally relevant concentrations of macro and microelements in solution. Zero-tension lysimeters directly sample the mobile fraction of soil solutions. Unfortunately, they are expensive to sample and require long equilibration periods. Other solution extraction methods do not provide solutions similar in concentration to lysimeters, either because they sample a different fraction of the soil solution or due to the impacts of the sampling process. The processes that produce lysimeter solutions cannot be emulated; however, to estimate lysimeter solution chemistry, we developed a standard protocol to produce solutions that resemble lysimeter solutions from podzolic soils using air-dried samples. We washed air-dried soil columns sequentially with de-ionized water until the electrical conductivity (EC) of the leachates stabilized and then leached the columns using an environmentally relevant concentration of a weak salt solution. We hypothesize that the stabilization point of the EC of the soil solution is indicative of the point at which soluble salts and organic material precipitated during sampling and storage are removed from the soil surface. Solutions produced by leaching, once the EC of wash solutions had stabilized, were comparable to lysimeter solutions from the area where samples were collected with respect to the concentrations of divalent cations, pH, EC and DOC.


Canadian Journal of Soil Science | 2011

Estimating trembling aspen productivity in the boreal transition ecoregion of Saskatchewan using site and soil variables

Bradley D. Pinno; Nicolas Bélanger

Pinno, B. D. and Bélanger, N. 2011. Estimating trembling aspen productivity in the boreal transition ecoregion of Saskatchewan using site and soil variables. Can. J. Soil Sci. 91: 661-669. The productivity of trembling aspen, as expressed by site quality index (SQI), in natural stands growing on three different soil parent material types (fluvial, lacustrine and glacial till) in the boreal transition ecoregion of Saskatchewan was evaluated by using soil and site variables. The soil and site variables used were either general categorical variables, such as parent material and ecosite, or continuous variables, such as soil texture (percent sand or clay), pH, carbon, nitrogen, C:N ratios, and elemental composition. It was not possible to reliably estimate SQI using only categorical site variables or continuous soil variables when all plots were grouped together. However, when plots were grouped by parent material type, over 45% of the variability in trembling aspen productivity was explained using the common soil measurements of texture and pH. In estimating SQI, there was an interaction between both pH and soil texture with parent material. On fluvial and lacustrine parent materials, increased clay content was positively correlated with SQI, but was negatively correlated with SQI on till, while pH was positively correlated with SQI on fluvial parent material, but negatively on lacustrine. Including more sophisticated measures of soil nutrient availability in the forest floor and BC horizons did not improve the SQI prediction. This study indicates that it is possible to estimate trembling aspen productivity using simple site and soil variables, provided that differences in soil properties within parent material groupings are considered in the analysis.


Plant and Soil | 2003

A cyclical but asynchronous pattern of fine root and woody biomass production in a hardwood forest of southern Quebec and its relationships with annual variation of temperature and nutrient availability

Benoît Côté; Nicolas Bélanger; François Courchesne; William H. Hendershot

In contrast to the well-documented seasonal variation in growth of below- and above-ground components of trees, the annual variation in below- and aboveground production is not well understood. In this study, we report on the monitoring of an unmanaged hardwood forest ecosystem in a small watershed of southern Quebec between 1993 and 1999. Below- and above-ground biomass production, leaf and soil solution chemistry, and air temperature were measured at different regular intervals and are reported on an annual basis. The objective of the study was to describe the annual dynamics of carbon partitioning between below- and above-ground tree components and to gain a better understanding of the soil and climatic factors that govern it. Fine root production peaked one year earlier than woody biomass production and years with high production of fine roots had low woody biomass production. All models that included May temperature in the calculation of the predicting/independent variables were significant predictors of total tree biomass production (r > 0.87). Fine root production was associated negatively with the previous year average growing season temperature (r < -0.84). Soil solution NO3−, NH4+ and NO3− + NH4+ concentrations were positively correlated with fine root production (r > 0.72) and negatively correlated with woody biomass production (r < -0.84). Leaf N and P concentrations were negatively correlated (r = -0.99 and r = -0.98, respectively) with fine root production for the period of 1994–1998. Our results suggest that a cool growing season, and in particular a cool month of October, is likely to result in low fine root production and nutrient uptake the following year and, therefore, to increase soil N availability and decrease leaf N. This initial response is thought to be the first step of a feedback loop involving plant N nutrition, soil N availability, fine root growth and aboveground biomass production that led to a cyclical (3–4 years) but asynchronous production of fine roots and aboveground biomass production.


Geobiology | 2014

Periglacial fires and trees in a continental setting of Central Canada, Upper Pleistocene.

Nicolas Bélanger; Christopher Carcaillet; G. A. Padbury; A. N. Harvey-Schafer; K. J. C. Van Rees

Fire is a key factor controlling global vegetation patterns and carbon cycling. It mostly occurs under warm periods during which fuel builds up with sufficient moisture, whereas such conditions stimulate fire ignition and spread. Biomass burning increased globally with warming periods since the last glacial era. Data confirming periglacial fires during glacial periods are very sparse because such climates are likely too cold to favour fires. Here, tree occurrence and fires during the Upper Pleistocene glacial periods in Central Canada are inferred from botanical identification and calibrated radiocarbon dates of charcoal fragments. Charcoal fragments were archived in sandy dunes of central Saskatchewan and were dated >50000-26600 cal BP. Fragments were mostly gymnosperms. Parallels between radiocarbon dates and GISP2-δ¹⁸O records deciphered relationships between fire and climate. Fires occurred either hundreds to thousands of years after Dansgaard-Oeschger (DO) interstadial warming events (i.e., the time needed to build enough fuel for fire ignition and spread) or at the onset of the DO event. The chronological uncertainties result from the dated material not precisely matching the fires and from the low residual ¹⁴C associated with old sample material. Dominance of high-pressure systems and low effective moisture during post-DO coolings likely triggered flammable periglacial ecosystems, while lower moisture and the relative abundance of fuel overshadowed lower temperatures for fire spread. Laurentide ice sheet (LIS) limits during DO events are difficult to assess in Central Canada due to sparse radiocarbon dates. Our radiocarbon data set constrains the extent of LIS. Central Saskatchewan was not covered by LIS throughout the Upper Pleistocene and was not a continental desert. Instead, our results suggest long-lasting periods where fluctuations of the northern tree limits and fires after interstadials occurred persistently.

Collaboration


Dive into the Nicolas Bélanger's collaboration.

Top Co-Authors

Avatar

David Paré

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Christian Messier

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Collin

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Fontana

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge