Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Boisgerault is active.

Publication


Featured researches published by Nicolas Boisgerault.


Cancer Research | 2008

Measles Virus Induces Oncolysis of Mesothelioma Cells and Allows Dendritic Cells to Cross-Prime Tumor-Specific CD8 Response

Anne Gauvrit; Samantha Brandler; Carole Sapede-Peroz; Nicolas Boisgerault; Frédéric Tangy; Marc Grégoire

Despite conventional medical and surgical treatments, malignant pleural mesothelioma (MPM) remains incurable. Oncovirotherapy (i.e., the use of replication-competent virus for cancer treatment) is currently explored in clinical trials. In this study, we investigated the antineoplastic potential of a new oncolytic viral agent, a live-attenuated measles virus (MV) strain derived from the Edmonston vaccine lineage (Schwarz strain). We evaluated both oncolytic activity and immunoadjuvant properties of the MV vaccine strain on mesothelioma tumor cells. Infectivity, syncytium formation, and cytolytic activity of MV were studied on a panel of mesothelioma cells derived from pleural effusions of MPM patients. We observed that MV infected preferentially MPM cell lines in comparison with nontransformed mesothelial cells, leading to an efficient killing of a significant fraction of tumor cells. A cytoreductive activity was also evidenced through formation of multinuclear cellular aggregates (syncytia). The susceptibility of MPM cell lines to measles infection was assessed by the analysis of cell surface expression of the MV vaccine receptor (CD46). We also evaluated whether MV infection of mesothelioma cells could elicit an autologous antitumor immune response. We showed that MV Schwarz strain induced apoptotic cell death of infected mesothelioma cells, which were efficiently phagocytosed by dendritic cells (DC). Loading of DCs with MV-infected MPM cells induced DC spontaneous maturation, as evidenced by the increased expression of MHC and costimulatory molecules along with the production of proinflammatory cytokines. Priming of autologous T cells by DCs loaded with MV-infected MPM cells led to a significant proliferation of tumor-specific CD8 T cells. Altogether, these data strongly support the potential of oncolytic MV as an efficient therapeutic agent for mesothelioma cancer.


Immunotherapy | 2010

New perspectives in cancer virotherapy: bringing the immune system into play

Nicolas Boisgerault; Frédéric Tangy; Marc Grégoire

Despite constant advances in medically orientated cancer studies, conventional treatments by surgery, chemotherapy or radiotherapy remain partly ineffective against numerous cancers. Oncolytic virotherapy - the use of replication-competent viruses that specifically target tumor cells - has opened up new perspectives for improved treatment of these pathologies. Certain viruses demonstrate a natural, preferential tropism for tumor cells, while others can be genetically modified to show such an effect. Several of these viruses have already been used in preclinical and clinical trials in different tumor models; these studies have provided encouraging results and, thus, confirm the growing interest presented by this therapeutic strategy. The role of the immune system in the efficacy of cancer virotherapy has been poorly documented for a long time; however, several recent reports have presented evidence of synergistic effects between both direct viral oncolysis and the activation of specific, anti-tumor immune responses. These findings offer an exciting outlook for the future of cancer virotherapy.


BioMed Research International | 2013

Natural Oncolytic Activity of Live-Attenuated Measles Virus against Human Lung and Colorectal Adenocarcinomas

Nicolas Boisgerault; Jean-Baptiste Guillerme; Daniel Pouliquen; Mariana Mesel-Lemoine; Carole Achard; Chantal Combredet; Jean-François Fonteneau; Frédéric Tangy; Marc Grégoire

Lung and colorectal cancers are responsible for approximately 2 million deaths each year worldwide. Despite continual improvements, clinical management of these diseases remains challenging and development of novel therapies with increased efficacy is critical to address these major public health issues. Oncolytic viruses have shown promising results against cancers that are resistant to conventional anticancer therapies. Vaccine strains of measles virus (MV) exhibit such natural antitumor properties by preferentially targeting cancer cells. We tested the ability of live-attenuated Schwarz strain of MV to specifically infect tumor cells derived from human lung and colorectal adenocarcinomas and demonstrated that live-attenuated MV exhibits oncolytic properties against these two aggressive neoplasms. We also showed that Schwarz MV was able to prevent uncontrollable growth of large, established lung and colorectal adenocarcinoma xenografts in nude mice. Moreover, MV oncolysis is associated with in vivo activation of caspase-3 in colorectal cancer model, as shown by immunohistochemical staining. Our results provide new arguments for the use of MV as an antitumor therapy against aggressive human malignancies.


Oncotarget | 2015

Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response.

Carole Achard; Nicolas Boisgerault; Tiphaine Delaunay; David Roulois; Steven Nedellec; Pierre-Joseph Royer; Mallory Pain; Chantal Combredet; Mariana Mesel-Lemoine; Laurent Cellerin; A. Magnan; Frédéric Tangy; Marc Grégoire; Jean-François Fonteneau

Attenuated measles virus (MV) is currently being evaluated as an oncolytic virus in clinical trials and could represent a new therapeutic approach for malignant pleural mesothelioma (MPM). Herein, we screened the sensitivity to MV infection and replication of twenty-two human MPM cell lines and some healthy primary cells. We show that MV replicates in fifteen of the twenty-two MPM cell lines. Despite overexpression of CD46 by a majority of MPM cell lines compared to healthy cells, we found that the sensitivity to MV replication did not correlate with this overexpression. We then evaluated the antiviral type I interferon (IFN) responses of MPM cell lines and healthy cells. We found that healthy cells and the seven insensitive MPM cell lines developed a type I IFN response in presence of the virus, thereby inhibiting replication. In contrast, eleven of the fifteen sensitive MPM cell lines were unable to develop a complete type I IFN response in presence of MV. Finally, we show that addition of type I IFN onto MV sensitive tumor cell lines inhibits replication. These results demonstrate that defects in type I IFN response are frequent in MPM and that MV takes advantage of these defects to exert oncolytic activity.


Biological Research | 2012

Human dendritic cells sequentially matured with CD4+ T cells as a secondary signal favor CTL and long-term T memory cell responses

Thomas Simon; Séverine Tanguy-Royer; Pierre-Joseph Royer; Nicolas Boisgerault; Jihane Frikeche; Jean-François Fonteneau; Marc Grégoire

Dendritic cells (DCs) are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL) responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.


OncoImmunology | 2017

Oncolytic measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by human myeloid and plasmacytoid dendritic cells

Carole Achard; Jean-Baptiste Guillerme; Daniela Bruni; Nicolas Boisgerault; Chantal Combredet; Frédéric Tangy; Nolwenn Jouvenet; Marc Grégoire; Jean-François Fonteneau

ABSTRACT Attenuated measles virus (MV) is currently being evaluated in clinical trials as an oncolytic therapeutic agent. Originally used for its lytic activity against tumor cells, it is now admitted that the effectiveness of MV also lies in its ability to initiate antitumor immune responses through the activation of dendritic cells (DCs). In this study, we investigated the capacity of oncolytic MV to convert human blood myeloid CD1c+ DCs and plasmacytoid DCs (pDCs) into cytotoxic effectors. We found that MV induces the expression of the cytotoxic protein TNF-related apoptosis-inducing ligand (TRAIL) on the surface of DCs. We demonstrate that the secretion of interferon-α (IFN-α) by DCs in response to MV is responsible for this TRAIL expression. Several types of PRRs (pattern recognition receptors) have been implicated in MV genome recognition, including RLRs (RIG-I-like receptors) and TLRs (Toll-like receptors). We showed that CD1c+ DCs secrete modest amounts of IFN-α and express TRAIL in an RLR-dependent manner upon exposure to MV. In pDCs, MV is recognized by RLRs and also by TLR7, leading to the secretion of high amounts of IFN-α and TRAIL expression. Finally, we showed that MV-stimulated DCs induce TRAIL-mediated cell death of Jurkat cells, confirming their acquisition of cytotoxic functions. Our results demonstrate that MV can activate cytotoxic myeloid CD1c+ DCs and pDCs, which may participate to the antitumor immune response.


Journal of clinical & cellular immunology | 2015

Induction of Immunogenic Tumor Cell Death by Attenuated Oncolytic Measles Virus

Carole Achard; Nicolas Boisgerault; Tiphaine Delaunay; Frédéric Tangy; Marc Grégoire; Jean-François Fonteneau

Antitumor virotherapy is a developing approach to treat cancer with oncolytic viruses, namely replicative viruses that exclusively or preferentially infect and kill tumor cells. Attenuated strains of Measles Virus (MV) are now being used as oncolytic viruses in clinical trials to treat several types of cancer. The efficacy of oncolytic viruses is mainly due to their capacity to infect and kill tumor cells, but it has also been demonstrated that their capacity to induce immunogenic cell death can activate an antitumor immune response. In this review, we describe the oncolytic capacity of MV and the concept of Immunogenic Cell Death (ICD). We then review how MV induces immunogenic cell death, which can be beneficial for cancer treatment.


OncoImmunology | 2018

Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells.

Tiphaine Delaunay; Mathilde Violland; Nicolas Boisgerault; Soizic Dutoit; Virginie Vignard; Christian Münz; Monique Gannagé; B. Dréno; Kristine Vaivode; Dace Pjanova; Nathalie Labarrière; Yaohe Wang; E. Antonio Chiocca; Fabrice Le Boeuf; John C. Bell; Philippe Erbs; Frédéric Tangy; Marc Grégoire; Jean-François Fonteneau

ABSTRACT Oncolytic immunotherapy using oncolytic viruses (OV) has been shown to stimulate the antitumor immune response by inducing the release of tumor-associated antigens (TAA) and danger signals from the dying infected tumor cells. In this study, we sought to determine if the lysis of tumor cells induced by different OV: measles virus, vaccinia virus, vesicular stomatitis virus, herpes simplex type I virus, adenovirus or enterovirus, has consequences on the capacity of tumor cells to present TAA, such as NY-ESO-1. We show that the co-culture of NY-ESO-1neg/HLA-DP4pos melanoma cells with NY-ESO-1pos/HLA-DP4neg melanoma cells infected and killed by different OV induces an intercellular transfer of NY-ESO-1 that allows the recognition of NY-ESO-1neg/HLA-DP4pos tumor cells by an HLA-DP4/NY-ESO-1(157–170)-specific CD4+ cytotoxic T cell clone, NY67. We then confirmed this result in a second model with an HLA-DP4+ melanoma cell line that expresses a low amount of NY-ESO-1. Recognition of this cell line by the NY67 clone is largely increased in the presence of OV productive infection. Altogether, our results show for the first time another mechanism of stimulation of the anti-tumor immune response by OV, via the loading of tumor cells with TAA that sensitizes them for direct recognition by specific effector CD4+ T cells, supporting the use of OV for cancer immunotherapy.


Oncotarget | 2018

Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma

Joëlle S. Nader; Jérôme Abadie; Sophie Deshayes; Alice Boissard; Stéphanie Blandin; Christophe Blanquart; Nicolas Boisgerault; Olivier Coqueret; Catherine Guette; Marc Grégoire; Daniel Pouliquen

Sarcomatoid mesothelioma (SM) is a devastating cancer associated with one of the poorest outcome. Therefore, representative preclinical models reproducing different tumor microenvironments (TME) observed in patients would open up new prospects for the identification of markers and evaluation of innovative therapies. Histological analyses of four original models of rat SM revealed their increasing infiltrative and metastatic potential were associated with differences in Ki67 index, blood-vessel density, and T-lymphocyte and macrophage infiltration. In comparison with the noninvasive tumor M5-T2, proteomic analysis demonstrated the three invasive tumors F4-T2, F5-T1 and M5-T1 shared in common a very significant increase in the abundance of the multifunctional proteins galectin-3, prohibitin and annexin A5, and a decrease in proteins involved in cell adhesion, tumor suppression, or epithelial differentiation. The increased metastatic potential of the F5-T1 tumor, relative to F4-T2, was associated with an increased macrophage vs T-cell infiltrate, changes in the levels of expression of a panel of cytokine genes, an increased content of proteins involved in chromatin organization, ribosome structure, splicing, or presenting anti-adhesive properties, and a decreased content of proteins involved in protection against oxidative stress, normoxia and intracellular trafficking. The most invasive tumor, M5-T1, was characterized by a pattern of specific phenotypic and molecular features affecting the presentation of MHC class I-mediated antigens and immune cell infiltration, or involved in the reorganization of the cytoskeleton and composition of the extracellular matrix. These four preclinical models and data represent a new resource available to the cancer research community to catalyze further investigations on invasiveness.


Current Gene Therapy | 2017

Modulation of the Type I Interferon Response Defines the Sensitivity of Human Melanoma Cells to Oncolytic Measles Virus.

Ferdaous Allagui; Carole Achard; Clarisse Panterne; Chantal Combredet; Nathalie Labarrière; Brigitte Dreno; Amel Benammar Elgaaied; Daniel Pouliquen; Frédéric Tangy; Jean-François Fonteneau; Marc Grégoire; Nicolas Boisgerault

Collaboration


Dive into the Nicolas Boisgerault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carole Achard

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge