Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Bouché is active.

Publication


Featured researches published by Nicolas Bouché.


The Astrophysical Journal | 2009

THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES*

N. M. Förster Schreiber; R. Genzel; Nicolas Bouché; G. Cresci; R. Davies; Peter Buschkamp; Kristen L. Shapiro; L. J. Tacconi; E. K. S. Hicks; Shy Genel; Alice E. Shapley; Dawn K. Erb; Charles C. Steidel; D. Lutz; F. Eisenhauer; S. Gillessen; A. Sternberg; A. Renzini; A. Cimatti; Emanuele Daddi; J. Kurk; S. Lilly; Xu Kong; Matthew D. Lehnert; N. P. H. Nesvadba; A. Verma; H. J. McCracken; Nobuo Arimoto; Marco Mignoli; Masato Onodera

We present the Spectroscopic Imaging survey in the near-infrared (near-IR) with SINFONI (SINS) of high-redshift galaxies. With 80 objects observed and 63 detected in at least one rest-frame optical nebular emission line, mainly Hα, SINS represents the largest survey of spatially resolved gas kinematics, morphologies, and physical properties of star-forming galaxies at z ~ 1-3. We describe the selection of the targets, the observations, and the data reduction. We then focus on the SINS Hα sample, consisting of 62 rest-UV/optically selected sources at 1.3 < z < 2.6 for which we targeted primarily the Hα and [N II] emission lines. Only ≈30% of this sample had previous near-IR spectroscopic observations. The galaxies were drawn from various imaging surveys with different photometric criteria; as a whole, the SINS Hα sample covers a reasonable representation of massive M_* ≳ 10^(10) M_☉ star-forming galaxies at z ≈ 1.5-2.5, with some bias toward bluer systems compared to pure K-selected samples due to the requirement of secure optical redshift. The sample spans 2 orders of magnitude in stellar mass and in absolute and specific star formation rates, with median values ≈3 × 10^(10) M_☉, ≈70 M_☉ yr^(–1), and ≈3 Gyr^(–1). The ionized gas distribution and kinematics are spatially resolved on scales ranging from ≈1.5 kpc for adaptive optics assisted observations to typically ≈4-5 kpc for seeing-limited data. The Hα morphologies tend to be irregular and/or clumpy. About one-third of the SINS Hα sample galaxies are rotation-dominated yet turbulent disks, another one-third comprises compact and velocity dispersion-dominated objects, and the remaining galaxies are clear interacting/merging systems; the fraction of rotation-dominated systems increases among the more massive part of the sample. The Hα luminosities and equivalent widths suggest on average roughly twice higher dust attenuation toward the H II regions relative to the bulk of the stars, and comparable current and past-averaged star formation rates.


Nature | 2010

High molecular gas fractions in normal massive star-forming galaxies in the young universe

L. J. Tacconi; R. Genzel; R. Neri; P. Cox; Michael C. Cooper; Kristen L. Shapiro; Alberto D. Bolatto; Nicolas Bouché; F. Bournaud; Andreas Burkert; Francoise Combes; Julia M. Comerford; M. Davis; N. M. Foerster Schreiber; S. Garcia-Burillo; J. Graciá-Carpio; D. Lutz; T. Naab; A. Omont; Alice E. Shapley; A. Sternberg; Benjamin J. Weiner

Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts <z> of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today’s massive spiral galaxies. The slow decrease between zu2009≈u20092 and zu2009≈u20091 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.


The Astrophysical Journal | 2008

From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey*

R. Genzel; Andreas Burkert; Nicolas Bouché; G. Cresci; N. M. Förster Schreiber; Alice E. Shapley; Kristen L. Shapiro; L. J. Tacconi; Peter Buschkamp; A. Cimatti; Emanuele Daddi; R. Davies; F. Eisenhauer; Dawn K. Erb; Shy Genel; Ortwin Gerhard; E. K. S. Hicks; D. Lutz; T. Naab; T. Ott; S. Rabien; A. Renzini; Charles C. Steidel; A. Sternberg; S. Lilly

We present Hα integral field spectroscopy of well-resolved, UV/optically selected z ~ 2 star-forming galaxies as part of the SINS survey with SINFONI on the ESO VLT. Our laser guide star adaptive optics and good seeing data show the presence of turbulent rotating star-forming outer rings/disks, plus central bulge/inner disk components, whose mass fractions relative to the total dynamical mass appear to scale with the [N II]/Hα flux ratio and the star formation age. We propose that the buildup of the central disks and bulges of massive galaxies at z ~ 2 can be driven by the early secular evolution of gas-rich proto-disks. High-redshift disks exhibit large random motions. This turbulence may in part be stirred up by the release of gravitational energy in the rapid cold accretion flows along the filaments of the cosmic web. As a result, dynamical friction and viscous processes proceed on a timescale of <1 Gyr, at least an order of magnitude faster than in z ~ 0 disk galaxies. Early secular evolution thus drives gas and stars into the central regions and can build up exponential disks and massive bulges, even without major mergers. Secular evolution along with increased efficiency of star formation at high surface densities may also help to account for the short timescales of the stellar buildup observed in massive galaxies at z ~ 2.


The Astrophysical Journal | 2006

SINFONI integral field spectroscopy of z ~ 2 UV-selected galaxies: rotation curves and dynamical evolution

N. M. Förster Schreiber; R. Genzel; Matthew D. Lehnert; Nicolas Bouché; A. Verma; Dawn K. Erb; Alice E. Shapley; Charles C. Steidel; R. Davies; D. Lutz; Nicole Nesvadba; L. J. Tacconi; F. Eisenhauer; Roberto Abuter; Andrea M. Gilbert; S. Gillessen; A. Sternberg

We present ~0.5 resolution near-infrared integral field spectroscopy of the Hα line emission of 14 z ~ 2 UV-selected BM/BX galaxies, obtained with SINFONI at the ESO Very Large Telescope. The average Hα half-light radius is r_(1/2)≈ 4 h^(-1)_(70) kpc, and line emission is detected over ≳20 h^(-1)_(70)kpc in several sources. In nine galaxies, we detect spatially resolved velocity gradients, from 40 to 410 km s^(-1) over ~10 h^(-1)_(70) kpc. The kinematics of the larger systems are generally consistent with orbital motions. Four galaxies are well described by rotating clumpy disks, and we extracted rotation curves out to radii ≳10 h^(-1)_(70) kpc. One or two galaxies exhibit signatures more consistent with mergers. Analyzing all 14 galaxies in the framework of rotating disks, we infer mean inclination- and beam-corrected maximum circular velocities of v_c ~ 180 ± 90 km s^(-1) and dynamical masses from ~0.5 to 25 × 10^(10) h^(-1)_(70) M_☉ within r_(1/2). The specific angular momenta of our BM/BX galaxies are similar to those of local late-type galaxies. Moreover, the specific angular momenta of their baryons are comparable to those of their dark matter halos. Extrapolating from the average vc at 10 himg1.gif kpc, the virial mass of the typical halo of a galaxy in our sample is 10^(11.7±0.5) h^(-1)_(70) M_☉. Kinematic modeling of the three best cases implies a ratio of v_c to local velocity dispersion v_(c)/σ ~ 2-4 and, accordingly, a large geometric thickness. We argue that this suggests a mass accretion (alternatively, gas exhaustion) timescale of ~500 Myr. We also argue that if our BM/BX galaxies were initially gas-rich, their clumpy disks would subsequently lose their angular momentum and form compact bulges on a timescale of ~1 Gyr.


The Astrophysical Journal | 2010

THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS

Nicolas Bouché; Avishai Dekel; R. Genzel; Shy Genel; G. Cresci; N. M. Förster Schreiber; Kristen L. Shapiro; R. I. Davies; L. J. Tacconi

Using the cosmological baryonic accretion rate and normal star formation (SF) efficiencies, we present a very simple model for star-forming galaxies that accounts for the mass and redshift dependences of the star formation rate (SFR)-mass and Tully-Fisher (TF) relations from z {approx} 2 to the present. The time evolution follows from the fact that each modeled galaxy approaches a steady state where the SFR follows the (net) cold gas accretion rate. The key feature of the model is a halo mass floor M {sub min} {approx_equal} 10{sup 11} M{sub sun} below which accretion is quenched in order to simultaneously account for the observed slopes of the SFR-mass and TF relations. The same successes cannot be achieved via an SF threshold (or delay) nor by varying the SF efficiency or the feedback efficiency. Combined with the mass ceiling for cold accretion due to virial shock heating, the mass floor M{sub min} explains galaxy downsizing, where more massive galaxies formed earlier and over a shorter period of time. It turns out that the model also accounts for the observed galactic baryon and gas fractions as a function of mass and time, and the cosmic SFR density, which are all resulting from themorexa0» mass floor M {sub min}. The model helps us to understand that it is the cosmological decline of accretion rate that drives the decrease of cosmic SFR density between z {approx} 2 and z = 0 and the rise of the cosmic SFR density from z {approx} 6 to z {approx} 2 that allows us to put a constraint on our main parameter M {sub min} {approx_equal} 10{sup 11} M{sub sun}. Among the physical mechanisms that could be responsible for the mass floor, our view is that photoionization feedback (from first in situ hot stars) lowering the cooling efficiency is likely to play a large role.«xa0less


Nature | 2006

The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.

R. Genzel; L. J. Tacconi; F. Eisenhauer; N. M. Förster Schreiber; A. Cimatti; E. Daddi; Nicolas Bouché; R. I. Davies; Matthew D. Lehnert; D. Lutz; Nicole Nesvadba; A. Verma; Roberto Abuter; K. Shapiro; A. Sternberg; A. Renzini; Xu Kong; Nobuo Arimoto; M. Mignoli

Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks—the primary components of present-day galaxies—were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.


The Astrophysical Journal | 2007

Dynamical Properties of z ~ 2 Star-forming Galaxies and a Universal Star Formation Relation

Nicolas Bouché; G. Cresci; R. Davies; F. Eisenhauer; N. M. Förster Schreiber; R. Genzel; S. Gillessen; M. D. Lehnert; D. Lutz; Nicole Nesvadba; Kristen L. Shapiro; A. Sternberg; L. J. Tacconi; A. Verma; A. Cimatti; Emanuele Daddi; A. Renzini; Dawn K. Erb; Alice E. Shapley; Charles C. Steidel

We present the first comparison of the dynamical properties of different samples of z ~ 1.4-3.4 star-forming galaxies from spatially resolved imaging spectroscopy from SINFONI/VLT integral field spectroscopy and IRAM CO millimeter interferometry. Our samples include 16 rest-frame UV-selected, 16 rest-frame optically selected, and 13 submillimeter galaxies (SMGs). We find that rest-frame UV and optically bright (K ranging from 0.06 to 0.2. In contrast, bright SMGs (S_(850) μm ≥ 5 mJy) have larger velocity widths and are much more compact. Hence, SMGs have lower angular momenta and higher matter densities than either the UV or optically selected populations. This indicates that dissipative major mergers may dominate the SMGs population, resulting in early spheroids, and that a significant fraction of the UV/optically bright galaxies have evolved less violently, either in a series of minor mergers, or in rapid dissipative collapse from the halo, given that either process may leads to the formation of early disks. These early disks may later evolve into spheroids via disk instabilities or mergers. Because of their small sizes and large densities, SMGs lie at the high surface density end of a universal (out to z = 2.5) Schmidt-Kennicutt relation between gas surface density and star formation rate surface density. The best-fit relation suggests that the star formation rate per unit area scales as the surface gas density to a power of ~1.7, and that the star formation efficiency increases by a factor of 4 between non-starbursts and strong starbursts.


The Astrophysical Journal | 2009

THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY-FISHER RELATION*

G. Cresci; E. K. S. Hicks; R. Genzel; N. M. Foerster Schreiber; R. Davies; Nicolas Bouché; Peter Buschkamp; Shy Genel; Kristen L. Shapiro; L. J. Tacconi; Jesper Sommer-Larsen; Andreas Burkert; F. Eisenhauer; Ortwin Gerhard; D. Lutz; T. Naab; A. Sternberg; A. Cimatti; E. Daddi; Dawn K. Erb; J. Kurk; S. L. Lilly; A. Renzini; Alice E. Shapley; Charles C. Steidel; Karina Caputi

We present the modeling of SINFONI integral field dynamics of 18 star-forming galaxies at z ~ 2 from Hα line emission. The galaxies are selected from the larger sample of the SINS survey, based on the prominence of ordered rotational motions with respect to more complex merger-induced dynamics. The quality of the data allows us to carefully select systems with kinematics dominated by rotation, and to model the gas dynamics across the whole galaxy using suitable exponential disk models. We obtain a good correlation between the dynamical mass and the stellar mass, finding that large gas fractions (M gas ≈ M *) are required to explain the difference between the two quantities. We use the derived stellar mass and maximum rotational velocity V max from the modeling to construct for the first time the stellar mass Tully-Fisher relation at z ~ 2.2. The relation obtained shows a slope similar to what is observed at lower redshift, but we detect an evolution of the zero point. We find that at z ~ 2.2 there is an offset in log(M *) for a given rotational velocity of 0.41 ± 0.11 with respect to the local universe. This result is consistent with the predictions of the latest N-body/hydrodynamical simulations of disk formation and evolution, which invoke gas accretion onto the forming disk in filaments and cooling flows. This scenario is in agreement with other dynamical evidence from SINS, where gas accretion from the halo is required to reproduce the observed properties of a large fraction of the z ~ 2 galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile, in the context of guaranteed time programs 073.B-9018, 074.A-9011, 075.A-0466, 076.A-0527, 077.A-0576, 078.A-0600, 078.A-0055, 079.A-0341, 080.A-0330, and 080.A-0635.


The Astrophysical Journal | 2008

Kinemetry of SINS high-redshift star-forming galaxies: distinguishing rotating disks from major mergers

Kristen L. Shapiro; R. Genzel; Natascha M. Förster Schreiber; L. J. Tacconi; Nicolas Bouché; G. Cresci; Richard Davies; F. Eisenhauer; Peter H. Johansson; Davor Krajnović; D. Lutz; Thorsten Naab; Nobuo Arimoto; S. Arribas; A. Cimatti; Luis Colina; Emanuele Daddi; Olivier Daigle; Dawn K. Erb; Olivier Hernandez; Xu Kong; Marco Mignoli; Masato Onodera; A. Renzini; Alice E. Shapley; Charles C. Steidel

We present a simple set of kinematic criteria that can distinguish between galaxies dominated by ordered rotational motion and those involved in major merger events. Our criteria are based on the dynamics of the warm ionized gas (as traced by Hα) within galaxies, making this analysis accessible to high-redshift systems, whose kinematics are primarily traceable through emission features. Using the method of kinemetry (developed by Krajnovic and coworkers), we quantify asymmetries in both the velocity and velocity dispersion maps of the warm gas, and the resulting criteria enable us to empirically differentiate between nonmerging and merging systems at high redshift. We apply these criteria to 11 of our best-studied rest-frame UV/optical-selected z ~ 2 galaxies for which we have near-infrared integral-field spectroscopic data from SINFONI on the VLT. Of these 11 systems, we find that >50% have kinematics consistent with a single rotating disk interpretation, while the remaining systems are more likely undergoing major mergers. This result, combined with the short formation timescales of these systems, provides evidence that rapid, smooth accretion of gas plays a significant role in galaxy formation at high redshift.


The Astrophysical Journal | 2008

Mergers and Mass Accretion Rates in Galaxy Assembly: The Millennium Simulation Compared to Observations of z ≈ 2 Galaxies

Shy Genel; R. Genzel; Nicolas Bouché; A. Sternberg; Thorsten Naab; Natascha M. Förster Schreiber; Kristen L. Shapiro; L. J. Tacconi; D. Lutz; G. Cresci; Peter Buschkamp; Richard Davies; E. K. S. Hicks

Recent observations of UV/optically selected, massive star-forming galaxies at z ≈ 2 indicate that the baryonic mass assembly and star formation history is dominated by continuous rapid accretion of gas and internal secular evolution, rather than by major mergers. We use the Millennium Simulation to build new halo merger trees and extract halo merger fractions and mass accretion rates. We find that, even for halos not undergoing major mergers, the mass accretion rates are plausibly sufficient to account for the high star formation rates observed in z ≈ 2 disks. On the other hand, the fraction of major mergers in the Millennium Simulation is sufficient to account for the number counts of submillimeter galaxies (SMGs), in support of observational evidence that these are major mergers. When following the fate of these two populations in the Millennium Simulation to z = 0, we find that subsequent mergers are not frequent enough to convert all z ≈ 2 turbulent disks into elliptical galaxies at z = 0. Similarly, mergers cannot transform the compact SMGs/red sequence galaxies at z ≈ 2 into observed massive cluster ellipticals at z = 0. We argue therefore, that secular and internal evolution must play an important role in the evolution of a significant fraction of z ≈ 2 UV/optically and submillimeter-selected galaxy populations.

Collaboration


Dive into the Nicolas Bouché's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge