Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Bovy is active.

Publication


Featured researches published by Nicolas Bovy.


PLOS ONE | 2011

MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells

Céline Sabatel; Ludovic Malvaux; Nicolas Bovy; Christophe Deroanne; Vincent Lambert; Maria-Luz Alvarez Gonzalez; Alain Colige; Jean-Marie Rakic; Agnès Noël; Joseph Martial; Ingrid Struman

Background MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. Methodology/Principal Findings We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. Conclusions/Significance Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB.


Molecular Oncology | 2014

miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization

Karmele Valencia; Diego Luis-Ravelo; Nicolas Bovy; Iker Antón; Susana Martínez-Canarias; Carolina Zandueta; Cristina Ormazábal; Ingrid Struman; Sébastien Tabruyn; Vera Rebmann; J. de las Rivas; Elisabet Guruceaga; Eva Bandrés; Fernando Lecanda

Bone metastasis represents one of the most deleterious clinical consequences arising in the context of many solid tumors. Severe osteolysis results from tumor cell colonization of the bone compartment, a process which entails reciprocal exchange of soluble signals between tumor cells and their osseous microenvironment. Recent evidence indicates that tumor‐intrinsic miRNAs are pleiotropic regulators of gene expression. But they are also frequently released in exosome‐like vesicles (ELV). Yet the functional relevance of the transference of tumor‐derived ELV and their miRNA cargo to the extracellular milieu during osseous colonization is unknown.


Journal of Cellular Physiology | 2015

Neoadjuvant Chemotherapy in Breast Cancer Patients Induces miR-34a and miR-122 Expression.

Pierre Freres; Claire Josse; Nicolas Bovy; Meriem Boukerroucha; Ingrid Struman; Vincent Bours; Guy Jerusalem

Circulating microRNAs (miRNAs) have been extensively studied in cancer as biomarkers but little is known regarding the influence of anti‐cancer drugs on their expression levels. In this article, we describe the modifications of circulating miRNAs profile after neoadjuvant chemotherapy (NAC) for breast cancer. The expression of 188 circulating miRNAs was assessed in the plasma of 25 patients before and after NAC by RT‐qPCR. Two miRNAs, miR‐34a and miR‐122, that were significantly increased after NAC, were measured in tumor tissue before and after chemotherapy in 7 patients with pathological partial response (pPR) to NAC. These two chemotherapy‐induced miRNAs were further studied in the plasma of 22 patients with adjuvant chemotherapy (AC) as well as in 12 patients who did not receive any chemotherapy. Twenty‐five plasma miRNAs were modified by NAC. Among these miRNAs, miR‐34a and miR‐122 were highly upregulated, notably in pPR patients with aggressive breast cancer. Furthermore, miR‐34a level was elevated in the remaining tumor tissue after NAC treatment. Studying the kinetics of circulating miR‐34a and miR‐122 expression during NAC revealed that their levels were especially increased after anthracycline‐based chemotherapy. Comparisons of the plasma miRNA profiles after NAC and AC suggested that chemotherapy‐induced miRNAs originated from both tumoral and non‐tumoral compartments. This study is the first to demonstrate that NAC specifically induces miRNA expression in plasma and tumor tissue, which might be involved in the anti‐tumor effects of chemotherapy in breast cancer patients. J. Cell. Physiol. 230: 473–481, 2015.


Oncotarget | 2016

Circulating microRNA-based screening tool for breast cancer

Pierre Freres; Stéphane Wenric; Meriem Boukerroucha; Jérôme Thiry; Nicolas Bovy; Ingrid Struman; Pierre Geurts; Joëlle Collignon; Hélène Schroeder; Frédéric Kridelka; Eric Lifrange; Véronique Jossa; Vincent Bours; Claire Josse; Guy Jerusalem

Circulating microRNAs (miRNAs) are increasingly recognized as powerful biomarkers in several pathologies, including breast cancer. Here, their plasmatic levels were measured to be used as an alternative screening procedure to mammography for breast cancer diagnosis. A plasma miRNA profile was determined by RT-qPCR in a cohort of 378 women. A diagnostic model was designed based on the expression of 8 miRNAs measured first in a profiling cohort composed of 41 primary breast cancers and 45 controls, and further validated in diverse cohorts composed of 108 primary breast cancers, 88 controls, 35 breast cancers in remission, 31 metastatic breast cancers and 30 gynecologic tumors. A receiver operating characteristic curve derived from the 8-miRNA random forest based diagnostic tool exhibited an area under the curve of 0.81. The accuracy of the diagnostic tool remained unchanged considering age and tumor stage. The miRNA signature correctly identified patients with metastatic breast cancer. The use of the classification model on cohorts of patients with breast cancers in remission and with gynecologic cancers yielded prediction distributions similar to that of the control group. Using a multivariate supervised learning method and a set of 8 circulating miRNAs, we designed an accurate, minimally invasive screening tool for breast cancer.


Journal of Cellular Physiology | 2014

Neoadjuvant chemotherapy in breast cancer induces miR-34a and miR-122 expression

Pierre Freres; Claire Josse; Nicolas Bovy; Meriem Boukerroucha; Ingrid Struman; Vincent Bours; Guy Jerusalem

Circulating microRNAs (miRNAs) have been extensively studied in cancer as biomarkers but little is known regarding the influence of anti‐cancer drugs on their expression levels. In this article, we describe the modifications of circulating miRNAs profile after neoadjuvant chemotherapy (NAC) for breast cancer. The expression of 188 circulating miRNAs was assessed in the plasma of 25 patients before and after NAC by RT‐qPCR. Two miRNAs, miR‐34a and miR‐122, that were significantly increased after NAC, were measured in tumor tissue before and after chemotherapy in 7 patients with pathological partial response (pPR) to NAC. These two chemotherapy‐induced miRNAs were further studied in the plasma of 22 patients with adjuvant chemotherapy (AC) as well as in 12 patients who did not receive any chemotherapy. Twenty‐five plasma miRNAs were modified by NAC. Among these miRNAs, miR‐34a and miR‐122 were highly upregulated, notably in pPR patients with aggressive breast cancer. Furthermore, miR‐34a level was elevated in the remaining tumor tissue after NAC treatment. Studying the kinetics of circulating miR‐34a and miR‐122 expression during NAC revealed that their levels were especially increased after anthracycline‐based chemotherapy. Comparisons of the plasma miRNA profiles after NAC and AC suggested that chemotherapy‐induced miRNAs originated from both tumoral and non‐tumoral compartments. This study is the first to demonstrate that NAC specifically induces miRNA expression in plasma and tumor tissue, which might be involved in the anti‐tumor effects of chemotherapy in breast cancer patients. J. Cell. Physiol. 230: 473–481, 2015.


Angiogenesis | 2013

MiR-205 is downregulated in hereditary hemorrhagic telangiectasia and impairs TGF-beta signaling pathways in endothelial cells

Sébastien Tabruyn; Sylvain Hansen; María Luisa Ojeda-Fernández; Nicolas Bovy; Roberto Zarrabeitia; Lucía Recio-Poveda; Carmelo Bernabeu; Joseph Martial; Luisa María Botella; Ingrid Struman

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes involved in the TGF-β pathway (ENG and ALK1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two circulating miRNAs differentially expressed in HHT patients. The plasma levels of miR-27a are elevated while those of miR-205 are reduced in both HHT1 and HHT2 patients compared to healthy controls. The role of miR-205 in endothelial cells was further investigated. Our data indicates that miR-205 expression displaces the TGF-β balance towards the anti-angiogenic side by targeting Smad1 and Smad4. In line, overexpression of miR-205 in endothelial cells reduces proliferation, migration and tube formation while its inhibition shows opposite effects. This study not only suggests that detection of circulating miRNA (miR-27a and miR-205) could help for the screening of HHT patients but also provides a functional link between the deregulated expression of miR-205 and the HHT phenotype.


Basic Research in Cardiology | 2013

Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy.

Arash Haghikia; Eva Podewski; E. Libhaber; Saida Labidi; Dieter Fischer; P. Roentgen; Dimitrios Tsikas; J. Jordan; Ralf Lichtinghagen; C. S. von Kaisenberg; Ingrid Struman; Nicolas Bovy; Karen Sliwa; Johann Bauersachs; Denise Hilfiker-Kleiner


Oncotarget | 2015

Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer

Nicolas Bovy; Benoît Blomme; Pierre Freres; Stella Dederen; Olivier Nivelles; Michelle Lion; Oriane Carnet; Joseph Martial; Agnès Noël; Marc Thiry; Guy Jerusalem; Claire Josse; Vincent Bours; Sébastien Tabruyn; Ingrid Struman


Archive | 2015

Analyse des propriétés anti-tumorales des exosomes endothéliaux dans le cancer du sein suite au transfert du microARN miR-503

Nicolas Bovy


Annals of Oncology | 2015

64PNeoadjuvant chemotherapy in breast cancer patients induces miR-34a expression

Pierre Freres; Claire Josse; Nicolas Bovy; Meriem Boukerroucha; Ingrid Struman; Vincent Bours; Guy Jerusalem

Collaboration


Dive into the Nicolas Bovy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge