Nicolas Brunner
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas Brunner.
New Journal of Physics | 2009
Stefano Pironio; Antonio Acín; Nicolas Brunner; Nicolas Gisin; Serge Massar; Valerio Scarani
Device-independent quantum key distribution (DIQKD) represents a relaxation of the security assumptions made in usual quantum key distribution (QKD). As in usual QKD, the security of DIQKD follows from the laws of quantum physics, but contrary to usual QKD, it does not rely on any assumptions about the internal working of the quantum devices used in the protocol. In this paper, we present in detail the security proof for a DIQKD protocol introduced in Acin et al (2008 Phys. Rev. Lett. 98 230501). This proof exploits the full structure of quantum theory (as opposed to other proofs that exploit only the no-signaling principle), but only holds against collective attacks, where the eavesdropper is assumed to act on the quantum systems of the honest parties independently and identically in each round of the protocol (although she can act coherently on her systems at any time). The security of any DIQKD protocol necessarily relies on the violation of a Bell inequality. We discuss the issue of loopholes in Bell experiments in this context.
New Journal of Physics | 2012
Bernhard Wittmann; Sven Ramelow; Fabian Steinlechner; Nathan K. Langford; Nicolas Brunner; Howard Mark Wiseman; Rupert Ursin; Anton Zeilinger
Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there remains the crucial challenge of simultaneously closing all major loopholes—the locality, freedom-of-choice and detection loopholes—in a single experiment. An important sub-class of local realistic theories can be tested with the concept of ‘steering’. The term ‘steering’ was introduced by Schrodinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein–Podolsky–Rosen (EPR) argument. Einstein called this ‘spooky action at a distance’. EPR-steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization-entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we exclude—for the first time loophole-free—an important class of local realistic theories considered by EPR. Besides its foundational importance, loophole-free steering also allows the distribution of quantum entanglement secure event in the presence of an untrusted party.
Science | 2012
Alberto Peruzzo; Peter Shadbolt; Nicolas Brunner; Sandu Popescu; Jeremy L. O'Brien
Delaying Quantum Choice Photons can display wavelike or particle-like behavior, depending on the experimental technique used to measure them. Understanding this duality lies at the heart of quantum mechanics. In two reports, Peruzzo et al. (p. 634) and Kaiser et al. (p. 637; see the Perspective on both papers by Lloyd) perform an entangled version of John Wheelers delayed-choice gedanken experiment, in which the choice of detection can be changed after a photon passes through a double-slit to avoid the measurement process affecting the state of the photon. The original proposal allowed the wave and particle nature of light to be interchanged after the light had entered the interferometer. By contrast in this study, entanglement allowed the wave and particle nature to be interchanged after the light was detected and revealed the quantum nature of the photon, for example, it displays wave- and particle-like behavior simultaneously. Quantum entanglement is used to probe the nature of the photon. Quantum systems exhibit particle- or wavelike behavior depending on the experimental apparatus they are confronted by. This wave-particle duality is at the heart of quantum mechanics. Its paradoxical nature is best captured in the delayed-choice thought experiment, in which a photon is forced to choose a behavior before the observer decides what to measure. Here, we report on a quantum delayed-choice experiment in which both particle and wave behaviors are investigated simultaneously. The genuinely quantum nature of the photon’s behavior is certified via nonlocality, which here replaces the delayed choice of the observer in the original experiment. We observed strong nonlocal correlations, which show that the photon must simultaneously behave both as a particle and as a wave.
Applied Physics Letters | 2005
Damien Stucki; Nicolas Brunner; Nicolas Gisin; Valerio Scarani; Hugo Zbinden
We present and demonstrate a new protocol for practical quantum cryptography, tailored for an implementation with weak coherent pulses to obtain a high key generation rate. The key is obtained by a simple time-of-arrival measurement on the dataline; the presence of an eavesdropper is checked by an interferometer on an additional monitoring line. The setup is experimentally simple; moreover, it is tolerant to reduced interference visibility and to photon number splitting attacks, thus featuring a high efficiency in terms of distilled secret bit per
Physical Review Letters | 2010
Nicolas Brunner; Christoph Simon
Recently, weak measurements were used to measure small effects that are transverse to the propagation direction of a light beam. Here we address the question of whether weak measurements are also useful for measuring small longitudinal phase shifts. We show that standard interferometry greatly outperforms weak measurements in a scenario involving a purely real weak value. However, we also present an interferometric scheme based on a purely imaginary weak value, combined with a frequency-domain analysis, which may have the potential to outperform standard interferometry by several orders of magnitude.
Physical Review Letters | 2010
Tamás Vértesi; Stefano Pironio; Nicolas Brunner
We show that the detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum systems of dimension larger than two. We introduce a series of asymmetric Bell tests for which an efficiency arbitrarily close to 1/N can be tolerated using N-dimensional systems, and a symmetric Bell test for which the efficiency can be lowered down to 61.8% using four-dimensional systems. Experimental perspectives for our schemes look promising considering recent progress in atom-photon entanglement and in photon hyperentanglement.
Physical Review Letters | 2008
Nicolas Brunner; Stefano Pironio; Antonio Acín; Nicolas Gisin; André Allan Méthot; Valerio Scarani
Nicolas Brunner, Stefano Pironio, Antonio Acin, 3 Nicolas Gisin, André Allan Méthot, and Valerio Scarani Group of Applied Physics, University of Geneva, Geneva, Switzerland ICFO-Institut de Ciencies Fotoniques, Castelldefels (Barcelona), Spain ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain Centre for Quantum Technologies, National University of Singapore, Singapore (Dated: May 9, 2008)
Physical Review Letters | 2014
Joseph Bowles; Tamás Vértesi; Marco Túlio Quintino; Nicolas Brunner
Einstein-Podolsky-Rosen steering is a form of quantum nonlocality exhibiting an inherent asymmetry between the observers, Alice and Bob. A natural question is then whether there exist entangled states which are one-way steerable, that is, Alice can steer Bob’s state, but it is impossible for Bob to steer the state of Alice. So far, such a phenomenon has been demonstrated for continuous variable systems, but with a strong restriction on allowed measurements, namely, considering only Gaussian measurements. Here we present a simple class of entangled two-qubit states which are one-way steerable, considering arbitrary projective measurements. This shows that the nonlocal properties of entangled states can be fundamentally asymmetrical.
Physical Review Letters | 2014
Marco Túlio Quintino; Tamás Vértesi; Nicolas Brunner
We investigate the relation between the incompatibility of quantum measurements and quantum nonlocality. We show that a set of measurements is not jointly measurable (i.e., incompatible) if and only if it can be used for demonstrating Einstein-Podolsky-Rosen steering, a form of quantum nonlocality. Moreover, we discuss the connection between Bell nonlocality and joint measurability, and give evidence that both notions are inequivalent. Specifically, we exhibit a set of incompatible quantum measurements and show that it does not violate a large class of Bell inequalities. This suggests the existence of incompatible quantum measurements which are Bell local, similarly to certain entangled states which admit a local hidden variable model.
Physical Review Letters | 2009
Nicolas Brunner; Paul Skrzypczyk
We first present a protocol for deterministically distilling nonlocality, building upon a recent result of Forster et al. [Phys. Rev. Lett. 102, 120401 (2009)10.1103/PhysRevLett.102.120401]. Our protocol, which is optimal for two-copy distillation, works efficiently for a specific class of postquantum nonlocal boxes, which we term correlated nonlocal boxes. In the asymptotic limit, all correlated nonlocal boxes are distilled to the maximally nonlocal box of Popescu and Rohrlich. Then, taking advantage of a result of Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006)10.1103/PhysRevLett.96.250401] we show that all correlated nonlocal boxes make communication complexity trivial, and therefore appear very unlikely to exist in nature. Astonishingly, some of these nonlocal boxes are arbitrarily close to the set of classical correlations. This result therefore gives new insight to the problem of why quantum nonlocality is limited.