Nicolas Charlet-Berguerand
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas Charlet-Berguerand.
The EMBO Journal | 2010
Chantal Sellier; Frédérique Rau; Yilei Liu; Flora Tassone; Renate K. Hukema; Renata Gattoni; Anne Schneider; Stéphane Richard; Rob Willemsen; David J. Elliott; Paul J. Hagerman; Nicolas Charlet-Berguerand
Fragile X‐associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder caused by expansion of 55–200 CGG repeats in the 5′‐UTR of the FMR1 gene. FXTAS is characterized by action tremor, gait ataxia and impaired executive cognitive functioning. It has been proposed that FXTAS is caused by titration of RNA‐binding proteins by the expanded CGG repeats. Sam68 is an RNA‐binding protein involved in alternative splicing regulation and its ablation in mouse leads to motor coordination defects. Here, we report that mRNAs containing expanded CGG repeats form large and dynamic intranuclear RNA aggregates that recruit several RNA‐binding proteins sequentially, first Sam68, then hnRNP‐G and MBNL1. Importantly, Sam68 is sequestered by expanded CGG repeats and thereby loses its splicing‐regulatory function. Consequently, Sam68‐responsive splicing is altered in FXTAS patients. Finally, we found that regulation of Sam68 tyrosine phosphorylation modulates its localization within CGG aggregates and that tautomycin prevents both Sam68 and CGG RNA aggregate formation. Overall, these data support an RNA gain‐of‐function mechanism for FXTAS neuropathology, and suggest possible target routes for treatment options.
Acta Neuropathologica | 2013
Sandra Almeida; Eduardo Gascon; Helene Tran; Hsin Jung Chou; Tania F. Gendron; Steven R. DeGroot; Andrew R. Tapper; Chantal Sellier; Nicolas Charlet-Berguerand; Anna Karydas; William W. Seeley; Adam L. Boxer; Leonard Petrucelli; Bruce L. Miller; Fen-Biao Gao
The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had >1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization, two iPSC lines from each subject were selected, differentiated into postmitotic neurons, and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs, iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover, repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.
Nature Structural & Molecular Biology | 2011
Frédérique Rau; Fernande Freyermuth; Charlotte Fugier; Jean-Philippe Villemin; Marie-Christine Fischer; Bernard Jost; Doulaye Dembélé; Geneviève Gourdon; Annie Nicole; Denis Duboc; Karim Wahbi; John W. Day; Harutoshi Fujimura; Masanori P. Takahashi; Didier Auboeuf; Natacha Dreumont; Denis Furling; Nicolas Charlet-Berguerand
Myotonic dystrophy is an RNA gain-of-function disease caused by expanded CUG or CCUG repeats, which sequester the RNA binding protein MBNL1. Here we describe a newly discovered function for MBNL1 as a regulator of pre-miR-1 biogenesis and find that miR-1 processing is altered in heart samples from people with myotonic dystrophy. MBNL1 binds to a UGC motif located within the loop of pre-miR-1 and competes for the binding of LIN28, which promotes pre-miR-1 uridylation by ZCCHC11 (TUT4) and blocks Dicer processing. As a consequence of miR-1 loss, expression of GJA1 (connexin 43) and CACNA1C (Cav1.2), which are targets of miR-1, is increased in both DM1- and DM2-affected hearts. CACNA1C and GJA1 encode the main calcium- and gap-junction channels in heart, respectively, and we propose that their misregulation may contribute to the cardiac dysfunctions observed in affected persons.
Nature Medicine | 2011
Charlotte Fugier; Arnaud F Klein; Caroline Hammer; Stéphane Vassilopoulos; Ylva Ivarsson; Anne Toussaint; Valérie Tosch; Alban Vignaud; Arnaud Ferry; Nadia Messaddeq; Yosuke Kokunai; Rie Tsuburaya; Pierre de la Grange; Doulaye Dembélé; Virginie François; Guillaume Précigout; Charlotte Boulade-Ladame; Marie-Christine Hummel; Adolfo López de Munain; Nicolas Sergeant; Annie Laquerrière; Christelle Thibault; François Deryckere; Didier Auboeuf; Luis Garcia; Pascale Zimmermann; Bjarne Udd; Benedikt Schoser; Masanori P. Takahashi; Ichizo Nishino
Myotonic dystrophy is the most common muscular dystrophy in adults and the first recognized example of an RNA-mediated disease. Congenital myotonic dystrophy (CDM1) and myotonic dystrophy of type 1 (DM1) or of type 2 (DM2) are caused by the expression of mutant RNAs containing expanded CUG or CCUG repeats, respectively. These mutant RNAs sequester the splicing regulator Muscleblind-like-1 (MBNL1), resulting in specific misregulation of the alternative splicing of other pre-mRNAs. We found that alternative splicing of the bridging integrator-1 (BIN1) pre-mRNA is altered in skeletal muscle samples of people with CDM1, DM1 and DM2. BIN1 is involved in tubular invaginations of membranes and is required for the biogenesis of muscle T tubules, which are specialized skeletal muscle membrane structures essential for excitation-contraction coupling. Mutations in the BIN1 gene cause centronuclear myopathy, which shares some histopathological features with myotonic dystrophy. We found that MBNL1 binds the BIN1 pre-mRNA and regulates its alternative splicing. BIN1 missplicing results in expression of an inactive form of BIN1 lacking phosphatidylinositol 5-phosphate–binding and membrane-tubulating activities. Consistent with a defect of BIN1, muscle T tubules are altered in people with myotonic dystrophy, and membrane structures are restored upon expression of the normal splicing form of BIN1 in muscle cells of such individuals. Finally, reproducing BIN1 splicing alteration in mice is sufficient to promote T tubule alterations and muscle weakness, a predominant feature of myotonic dystrophy.
The EMBO Journal | 2006
Nicolas Charlet-Berguerand; Sascha Feuerhahn; Stephanie E. Kong; Howard Ziserman; Joan Weliky Conaway; Ronald C. Conaway; Jean-Marc Egly
Oxidative lesions represent the most abundant DNA lesions within the cell. In the present study, we investigated the impact of the oxidative lesions 8‐oxoguanine, thymine glycol and 5‐hydroxyuracil on RNA polymerase II (RNA pol II) transcription using a well‐defined in vitro transcription system. We found that in a purified, reconstituted transcription system, these lesions block elongation by RNA pol II to different extents, depending on the type of lesion. Suggesting the presence of a bypass activity, the block to elongation is alleviated when transcription is carried out in HeLa cell nuclear extracts. By purifying this activity, we discovered that TFIIF could promote elongation through a thymine glycol lesion. The elongation factors Elongin and CSB, but not TFIIS, can also stimulate bypass of thymine glycol lesions, whereas Elongin, CSB and TFIIS can all enhance bypass of an 8‐oxoguanine lesion. By increasing the efficiency with which RNA pol II reads through oxidative lesions, elongation factors can contribute to transcriptional mutagenesis, an activity that could have implications for the generation or progression of human diseases.
The EMBO Journal | 2016
Chantal Sellier; Maria‐Letizia Campanari; Camille Julie Corbier; Angeline Gaucherot; Isabelle Kolb‐Cheynel; Mustapha Oulad-Abdelghani; Frank Ruffenach; Adeline Page; Sorana Ciura; Edor Kabashi; Nicolas Charlet-Berguerand
An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS‐FTD). Ataxin‐2 with intermediate length of polyglutamine expansions (Ataxin‐2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP‐43 and P62 proteins, which are histopathological hallmarks of ALS‐FTD. SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin‐2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin‐2 toxicity, suggesting a double‐hit pathological mechanism in ALS‐FTD.
Journal of Biological Chemistry | 2011
Hélène Tran; Nathalie Gourrier; Camille Lemercier-Neuillet; Claire-Marie Dhaenens; Audrey Vautrin; Francisco José Fernández-Gómez; Ludovic Arandel; Céline Carpentier; Hélène Obriot; Sabiha Eddarkaoui; Lucie Delattre; Edwige Van Brussels; Ian Holt; Glenn E. Morris; Bernard Sablonnière; Luc Buée; Nicolas Charlet-Berguerand; Susanna Schraen-Maschke; Denis Furling; Isabelle Behm-Ansmant; Christiane Branlant; Marie-Laure Caillet-Boudin; Nicolas Sergeant
Muscleblind-like-1 (MBNL1) is a splicing regulatory factor controlling the fetal-to-adult alternative splicing transitions during vertebrate muscle development. Its capture by nuclear CUG expansions is one major cause for type 1 myotonic dystrophy (DM1). Alternative splicing produces MBNL1 isoforms that differ by the presence or absence of the exonic regions 3, 5, and 7. To understand better their respective roles and the consequences of the deregulation of their expression in DM1, here we studied the respective roles of MBNL1 alternative and constitutive exons. By combining genetics, molecular and cellular approaches, we found that (i) the exon 5 and 6 regions are both needed to control the nuclear localization of MBNL1; (ii) the exon 3 region strongly enhances the affinity of MBNL1 for its pre-mRNA target sites; (iii) the exon 3 and 6 regions are both required for the splicing regulatory activity, and this function is not enhanced by an exclusive nuclear localization of MBNL1; and finally (iv) the exon 7 region enhances MBNL1-MBNL1 dimerization properties. Consequently, the abnormally high inclusion of the exon 5 and 7 regions in DM1 is expected to enhance the potential of MBNL1 of being sequestered with nuclear CUG expansions, which provides new insight into DM1 pathophysiology.
Nature Communications | 2016
Fernande Freyermuth; Frédérique Rau; Yosuke Kokunai; Thomas Linke; Chantal Sellier; Masayuki Nakamori; Yoshihiro Kino; Ludovic Arandel; Arnaud Jollet; Christelle Thibault; Muriel Philipps; Serge Vicaire; Bernard Jost; Bjarne Udd; John W. Day; Denis Duboc; Karim Wahbi; Tsuyoshi Matsumura; Harutoshi Fujimura; Hideki Mochizuki; François Deryckere; Takashi Kimura; Nobuyuki Nukina; Shoichi Ishiura; Vincent Lacroix; Amandine Campan-Fournier; Vincent Navratil; Emilie Chautard; Didier Auboeuf; Minoru Horie
Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy.
Neuron | 2017
Chantal Sellier; Ronald A.M. Buijsen; Fang He; Sam Natla; Laura Jung; Philippe Tropel; Angeline Gaucherot; Hugues Jacobs; Hamid Meziane; Alexandre Vincent; Marie-France Champy; Tania Sorg; Guillaume Pavlovic; Marie Wattenhofer-Donzé; Marie-Christine Birling; Mustapha Oulad-Abdelghani; Pascal Eberling; Frank Ruffenach; Mathilde Joint; Mathieu Anheim; Verónica Martínez-Cerdeño; Flora Tassone; Rob Willemsen; Renate K. Hukema; Stéphane Viville; Cécile Martinat; Peter K. Todd; Nicolas Charlet-Berguerand
Summary Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5′ UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2β and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2β rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS.
Embo Molecular Medicine | 2014
Sestina Falcone; William Roman; Karim Hnia; Vincent Gache; Nathalie Didier; Jeanne Lainé; Frédéric Auradé; Isabelle Marty; Ichizo Nishino; Nicolas Charlet-Berguerand; Norma B. Romero; Giovanna Marazzi; David Sassoon; Jocelyn Laporte; Edgar R. Gomes
Mutations in amphiphysin‐2/BIN1, dynamin 2, and myotubularin are associated with centronuclear myopathy (CNM), a muscle disorder characterized by myofibers with atypical central nuclear positioning and abnormal triads. Mis‐splicing of amphiphysin‐2/BIN1 is also associated with myotonic dystrophy that shares histopathological hallmarks with CNM. How amphiphysin‐2 orchestrates nuclear positioning and triad organization and how CNM‐associated mutations lead to muscle dysfunction remains elusive. We find that N‐WASP interacts with amphiphysin‐2 in myofibers and that this interaction and N‐WASP distribution are disrupted by amphiphysin‐2 CNM mutations. We establish that N‐WASP functions downstream of amphiphysin‐2 to drive peripheral nuclear positioning and triad organization during myofiber formation. Peripheral nuclear positioning requires microtubule/Map7/Kif5b‐dependent distribution of nuclei along the myofiber and is driven by actin and nesprins. In adult myofibers, N‐WASP and amphiphysin‐2 are only involved in the maintenance of triad organization but not in the maintenance of peripheral nuclear positioning. Importantly, we confirmed that N‐WASP distribution is disrupted in CNM and myotonic dystrophy patients. Our results support a role for N‐WASP in amphiphysin‐2‐dependent nuclear positioning and triad organization and in CNM and myotonic dystrophy pathophysiology.