Nicolas Chéron
École normale supérieure de Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas Chéron.
Journal of Organic Chemistry | 2012
Nicolas Chéron; Romain Ramozzi; Laurent El Kaim; Laurence Grimaud; Paul Fleurat-Lessard
The Ugi reaction is one of the most famous multicomponent couplings, and its efficiency is still explained by the original mechanism suggested by Ugi in the 60s. This article aims to present a thorough theoretical study of this reaction. It describes how the imine is activated and how the new stereogenic center is formed. Our calculations strongly suggest alternatives to some commonly accepted features, such as the reversibility of the intermediate steps, and temper the nature of the driving force of the reaction.
New Journal of Chemistry | 2012
Romain Ramozzi; Nicolas Chéron; Benoît Braïda; Philippe C. Hiberty; Paul Fleurat-Lessard
High level Valence Bond calculations support a predominantly carbenic electronic structure for isocyanides, with a secondary zwitterionic character, despite their linear geometry. This geometry results from the significant energetic stabilization due to nitrogen π lone pair donation. Results are not changed by substitution or solvation effects.
Journal of Physical Chemistry A | 2013
Nicolas Chéron; Romain Ramozzi; Laurent El Kaim; Laurence Grimaud; Paul Fleurat-Lessard
In a recent communication, we described the mechanism of the well-known Ugi-type reactions with a model system (J. Org. Chem. 2012, 77, 1361-1366). Herein, focusing on the Ugi-Smiles coupling, we study the effects of each of the four reactants on the energy profile to further explain the experimental results. The variations observed with different carbonyl compounds rely on their influence on the formation of the aryl-imidate, whereas the variations on the amine preferentially affect the Smiles rearrangement. The effect of substituents on the phenol derivative is seen upon both aryl-imidate formation and the rearrangement. The effect of the isocyanide substituents is less pronounced.
Journal of Physical Chemistry A | 2011
Nicolas Chéron; Laurent El Kaim; Laurence Grimaud; Paul Fleurat-Lessard
The Nef reaction between isocyanides and acyl chlorides is studied at the M06-2X/6-311+G(d,p) level of theory in toluene. After proving that the reaction follows a concerted mechanism instead of an addition-elimination path, we study the influences of the solvent, the isocyanide, the acyl moiety and the leaving group on the energy profile of the reaction. The calculated data can be rationalized with the pK(a) of the leaving group, or more generally with the population of the oxygen lone pairs of the acyl moiety.
Protein Science | 2016
Nicolas Chéron; Adrian W. R. Serohijos; Jeong-Mo Choi; Eugene I. Shakhnovich
Viruses constantly face the selection pressure of antibodies, either from innate immune response of the host or from administered antibodies for treatment. We explore the interplay between the biophysical properties of viral proteins and the population and demographic variables in the viral escape. The demographic and population genetics aspect of the viral escape have been explored before; however one important assumption was the a priori distribution of fitness effects (DFE). Here, we relax this assumption by instead considering a realistic biophysics‐based genotype‐phenotype relationship for RNA viruses escaping antibodies stress. In this model the DFE is itself an evolvable property that depends on the genetic background (epistasis) and the distribution of biophysical effects of mutations, which is informed by biochemical experiments and theoretical calculations in protein engineering. We quantitatively explore in silico the viability of viral populations under antibodies pressure and derive the phase diagram that defines the fate of the virus population (extinction or escape from stress) in a range of viral mutation rates and antibodies concentrations. We find that viruses are most resistant to stress at an optimal mutation rate (OMR) determined by the competition between supply of beneficial mutation to facilitate escape from stressors and lethal mutagenesis caused by excess of destabilizing mutations. We then show the quantitative dependence of the OMR on genome length and viral burst size. We also recapitulate the experimental observation that viruses with longer genomes have smaller mutation rate per nucleotide.
Journal of Chemical Information and Modeling | 2017
Théau Debroise; Eugene I. Shakhnovich; Nicolas Chéron
We present the third generation of our scoring function for the prediction of protein-ligand binding free energy. This function is now a hybrid between a knowledge-based potential and an empirical function. We constructed a diversified set of ∼1000 complexes from the PDBBinding-CN database for the training of the function, and we show that this number of complexes generates enough data to build the potential. The occurrence of 420 different types of atomic pairwise interactions is computed in up to five different ranges of distances to derive the knowledge-based part. All of the parameters were optimized, and we were able to considerably improve the accuracy of the scoring function with a Pearson correlation coefficient against experimental binding free energies of up to 0.57, which ranks our new scoring function as one of the best currently available and the second-best in terms of standard deviation (SD = 1.68 kcal/mol). The function was then further improved by inclusion of different terms taking into account repulsion and loss of entropy upon binding, and we show that it is capable of recovering native binding poses up to 80% of the time. All of the programs, tools, and protein sets are released in the Supporting Information or as open-source programs.
Archives of Virology | 2015
Nicolas Chéron; Chenchen Yu; Abimbola O. Kolawole; Eugene I. Shakhnovich; Christiane E. Wobus
Drug repurposing is a strategy employed to circumvent some of the bottlenecks involved in drug development, such as the cost and time needed for developing new molecular entities. Noroviruses cause recurrent epidemics and sporadic outbreaks of gastroenteritis associated with significant mortality and economic costs, but no treatment has been approved to date. Herein, a library of molecules previously used in humans was screened to find compounds with anti-noroviral activity. Antiviral testing for four selected compounds against murine norovirus infection revealed that rutin has anti-murine norovirus activity in cell-based assays.
Journal of Physical Chemistry B | 2017
Elise Duboué-Dijon; Eva Pluhařová; Dominik Domin; Kakali Sen; Aoife C. Fogarty; Nicolas Chéron; Damien Laage
Enzymes are widely used in nonaqueous solvents to catalyze non-natural reactions. While experimental measurements showed that the solvent nature has a strong effect on the reaction kinetics, the molecular details of the catalytic mechanism in nonaqueous solvents have remained largely elusive. Here we study the transesterification reaction catalyzed by the paradigm subtilisin Carlsberg serine protease in an organic apolar solvent. The rate-limiting acylation step involves a proton transfer between active-site residues and the nucleophilic attack of the substrate to form a tetrahedral intermediate. We design the first coupled valence-bond state model that simultaneously describes both reactions in the enzymatic active site. We develop a new systematic procedure to parametrize this model on high-level ab initio QM/MM free energy calculations that account for the molecular details of the active site and for both substrate and protein conformational fluctuations. Our calculations show that the reaction energy barrier changes dramatically with the solvent and protein conformational fluctuations. We find that the mechanism of the tetrahedral intermediate formation during the acylation step is similar to that determined under aqueous conditions, and that the proton transfer and nucleophilic attack reactions occur concertedly. We identify the reaction coordinate to be mostly due to the rearrangement of some residual water molecules close to the active site.
Chemistry: A European Journal | 2014
Romain Ramozzi; Nicolas Chéron; Laurent El Kaim; Laurence Grimaud; Paul Fleurat-Lessard
Following our previous mechanistic studies of multicomponent Ugi-type reactions, theoretical calculations have been performed to predict the efficiency of new substrates in Ugi-Smiles couplings. First, as predicted, 2,4,6-trichlorophenol experimentally gave the corresponding aryl-imidate. Theoretical predictions of nitrosophenols as good acidic partners were then successfully confirmed by experiments. In the latter case, the reaction offers a new access to benzimidazoles.
Journal of Computational Chemistry | 2017
Nicolas Chéron; Eugene I. Shakhnovich
The BACE‐1 enzyme is a prime target to find a cure to Alzheimers disease. In this article, we used the MM‐PBSA approach to compute the binding free energies of 46 reported ligands to this enzyme. After showing that the most probable protonation state of the catalytic dyad is mono‐protonated (on ASP32), we performed a thorough analysis of the parameters influencing the sampling of the conformational space (in total, more than 35 μs of simulations were performed). We show that ten simulations of 2 ns gives better results than one of 50 ns. We also investigated the influence of the protein force field, the water model, the periodic boundary conditions artifacts (box size), as well as the ionic strength. Amber03 with TIP3P, a minimal distance of 1.0 nm between the protein and the box edges and a ionic strength of I = 0.2 M provides the optimal correlation with experiments. Overall, when using these parameters, a Pearson correlation coefficient of R = 0.84 (R2 = 0.71) is obtained for the 46 ligands, spanning eight orders of magnitude of Kd (from 0.017 nm to 2000 μM, i.e., from −14.7 to −3.7 kcal/mol), with a ligand size from 22 to 136 atoms (from 138 to 937 g/mol). After a two‐parameter fit of the binding affinities for 12 of the ligands, an error of RMSD = 1.7 kcal/mol was obtained for the remaining ligands.