Nicolas Christou
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas Christou.
Journal of Statistics Education | 2010
Jameel Al-Aziz; Nicolas Christou; Ivo D. Dinov
The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis.
Journal of Statistics Education | 2009
Ivo D. Dinov; Nicolas Christou; Robert G. Gould
Modern approaches for technology-based blended education utilize a variety of recently developed novel pedagogical, computational and network resources. Such attempts employ technology to deliver integrated, dynamically-linked, interactive-content and heterogeneous learning environments, which may improve student comprehension and information retention. In this paper, we describe one such innovative effort of using technological tools to expose students in probability and statistics courses to the theory, practice and usability of the Law of Large Numbers (LLN). We base our approach on integrating pedagogical instruments with the computational libraries developed by the Statistics Online Computational Resource (www.SOCR.ucla.edu). To achieve this merger we designed a new interactive Java applet and a corresponding demonstration activity that illustrate the concept and the applications of the LLN. The LLN applet and activity have common goals - to provide graphical representation of the LLN principle, build lasting student intuition and present the common misconceptions about the law of large numbers. Both the SOCR LLN applet and activity are freely available online to the community to test, validate and extend (Applet: http://socr.ucla.edu/htmls/exp/Coin_Toss_LLN_Experiment.html, and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_LLN).
PLOS ONE | 2011
Nicolas Christou; Ivo D. Dinov
Many scientific investigations depend on obtaining data-driven, accurate, robust and computationally-tractable parameter estimates. In the face of unavoidable intrinsic variability, there are different algorithmic approaches, prior assumptions and fundamental principles for computing point and interval estimates. Efficient and reliable parameter estimation is critical in making inference about observable experiments, summarizing process characteristics and prediction of experimental behaviors. In this manuscript, we demonstrate simulation, construction, validation and interpretation of confidence intervals, under various assumptions, using the interactive web-based tools provided by the Statistics Online Computational Resource (http://www.SOCR.ucla.edu). Specifically, we present confidence interval examples for population means, with known or unknown population standard deviation; population variance; population proportion (exact and approximate), as well as confidence intervals based on bootstrapping or the asymptotic properties of the maximum likelihood estimates. Like all SOCR resources, these confidence interval resources may be openly accessed via an Internet-connected Java-enabled browser. The SOCR confidence interval applet enables the user to empirically explore and investigate the effects of the confidence-level, the sample-size and parameter of interest on the corresponding confidence interval. Two applications of the new interval estimation computational library are presented. The first one is a simulation of confidence interval estimating the US unemployment rate and the second application demonstrates the computations of point and interval estimates of hippocampal surface complexity for Alzheimers disease patients, mild cognitive impairment subjects and asymptomatic controls.
International Journal of Mathematical Education in Science and Technology | 2011
Ivo D. Dinov; Nicolas Christou
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges.
Journal of Statistics Education | 2008
Nicolas Christou
In this paper we present an application of statistics using real stock market data. Most, if not all, students have some familiarity with the stock market (or at least they have heard about it) and therefore can understand the problem easily. It is the real data analysis that students find interesting. Here we explore the building of efficient portfolios through optimization using examples of two and three stocks, and how covariance and correlation can help the investor to diversify his or her risk. We discuss why diversification works, but also the problems that arise in portfolio management. Stock market data can be incorporated at any level of statistics, from lower division, to upper division, to graduate courses of Mathematics and Statistics. From our experience, students find this topic very interesting and often they want to enroll in other courses related to this area.
Computers in Education | 2008
Ivo D. Dinov; Juana Sanchez; Nicolas Christou
Journal of online learning and teaching / MERLOT | 2010
Nicolas Christou; Ivo D. Dinov
Teaching Statistics | 2009
Ivo D. Dinov; Nicolas Christou
Statistics Online Computational Resource | 2007
Nicolas Christou; Ivo D. Dinov; Juana Sanchez
Teaching Statistics | 2013
Ivo D. Dinov; Scott Kamino; Bilal Bhakhrani; Nicolas Christou