Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Collin is active.

Publication


Featured researches published by Nicolas Collin.


The Journal of Infectious Diseases | 2014

Targeted Nasal Vaccination Provides Antibody-Independent Protection Against Staphylococcus aureus

Karen Misstear; Edel A. McNeela; Alison G. Murphy; Joan A. Geoghegan; Kate M. O'Keeffe; John P. Fox; Kin Chan; Simon Heuking; Nicolas Collin; Timothy J. Foster; Rachel M. McLoughlin; Ed C. Lavelle

Despite showing promise in preclinical models, anti-Staphylococcus aureus vaccines have failed in clinical trials. To date, approaches have focused on neutralizing/opsonizing antibodies; however, vaccines exclusively inducing cellular immunity have not been studied to formally test whether a cellular-only response can protect against infection. We demonstrate that nasal vaccination with targeted nanoparticles loaded with Staphylococcus aureus antigen protects against acute systemic S. aureus infection in the absence of any antigen-specific antibodies. These findings can help inform future developments in staphylococcal vaccine development and studies into the requirements for protective immunity against S. aureus.


PLOS Pathogens | 2009

Sand Fly Salivary Proteins Induce Strong Cellular Immunity in a Natural Reservoir of Visceral Leishmaniasis with Adverse Consequences for Leishmania

Nicolas Collin; Regis Gomes; Clarissa Teixeira; Lily I. Cheng; Andre Laughinghouse; Jerrold M. Ward; Dia-Eldin Elnaiem; Laurent Fischer; Jesus G. Valenzuela; Shaden Kamhawi

Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-γ at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG2 antibody levels and significant IFN-γ production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-γ and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response.


PLOS Neglected Tropical Diseases | 2010

Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America.

Clarissa Teixeira; Regis Gomes; Nicolas Collin; David Reynoso; Ryan C. Jochim; Fabiano Oliveira; Amy E. Seitz; Dia-Eldin Elnaiem; Arlene de Jesus Mendes Caldas; Ana Paula Souza; Cláudia Brodskyn; Ivete Lopes de Mendonça; Carlos Henrique Nery Costa; Petr Volf; Aldina Barral; Shaden Kamhawi; Jesus G. Valenzuela

Background Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. Methodology/Principal Findings We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. Conclusions/Significance Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.


Journal of Biological Chemistry | 2011

Structure and function of a "yellow" protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection.

X. Xu; Fabiano Oliveira; B.W. Chang; Nicolas Collin; Regis Gomes; Clarissa Teixeira; David Reynoso; V. My Pham; D.E. Elnaiem; Shaden Kamhawi; José M. C. Ribeiro; Jesus G. Valenzuela; J.F. Andersen

LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect “yellow” family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Lufaxin, a Novel Factor Xa Inhibitor From the Salivary Gland of the Sand Fly Lutzomyia longipalpis Blocks Protease-Activated Receptor 2 Activation and Inhibits Inflammation and Thrombosis In Vivo

Nicolas Collin; Teresa C. F. Assumpção; Daniella M. Mizurini; Dana C. Gilmore; Angélica Dutra-Oliveira; Michalis Kotsyfakis; Anderson Sá-Nunes; Clarissa Teixeira; José M. C. Ribeiro; Robson Q. Monteiro; Jesus G. Valenzuela; Ivo M. B. Francischetti

Objective—Blood-sucking arthropods’ salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results—Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin’s primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. Conclusion—Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.


Vaccine | 2013

Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains.

Janny Westdijk; Patrick Koedam; Mario Barro; Benjamin P. Steil; Nicolas Collin; Thomas S. Vedvick; Wilfried A.M. Bakker; Peter van der Ley; Gideon Kersten

Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titres (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotypes 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7-20-27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants.


PLOS Neglected Tropical Diseases | 2009

Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

Alexandra Schwarz; Stefan Helling; Nicolas Collin; Clarissa Teixeira; Nora Medrano-Mercado; Jen C.C. Hume; Teresa C.F. Assumpção; Katrin Marcus; Christian Stephan; Helmut E. Meyer; José M. C. Ribeiro; Peter F. Billingsley; Jesus G. Valenzuela; Jeremy M. Sternberg; G. A. Schaub

Background Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. Methodology/Principal Findings T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. Conclusions/Significance The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.


Journal of Controlled Release | 2016

Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles

Eleni Maria Varypataki; Christophe Barnier-Quer; Nicolas Collin; Ferry Ossendorp; Wim Jiskoot

Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer.


Scientific Reports | 2016

SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis

Viviana P. Ferreira; Vladimir F. Vale; Michael K. Pangburn; Maha Abdeladhim; Antonio Ferreira Mendes-Sousa; Iliano V. Coutinho-Abreu; Manoochehr Rasouli; Elizabeth A. Brandt; Claudio Meneses; Kolyvan Ferreira Lima; Ricardo N. Araujo; Marcos H. Pereira; Michalis Kotsyfakis; Fabiano Oliveira; Shaden Kamhawi; José M. C. Ribeiro; Nelder F. Gontijo; Nicolas Collin; Jesus G. Valenzuela

Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.


Vaccine | 2013

Technology transfer of an oil-in-water vaccine-adjuvant for strengthening pandemic influenza preparedness in Indonesia.

Roland Ventura; Livia Brunner; Bambang Heriyanto; Otto de Boer; Michael O’Hara; Chuong Huynh; Mahendra Suhardono; Nicolas Collin

With the current enzootic circulation of highly pathogenic avian influenza viruses, the ability to increase global pandemic influenza vaccine production capacity is of paramount importance. This has been highlighted by, and is one of the main pillars of, the WHO Global Action Plan for Influenza Vaccines (GAP). Such capacity expansion is especially relevant in developing countries. The Vaccine Formulation Laboratory at University of Lausanne is engaged in the technology transfer of an antigen-sparing oil-in-water adjuvant in order to empower developing countries vaccine manufacturers to increase pandemic influenza vaccine capacity. In a one-year project funded by United States Department of Health and Human Services, the Vaccine Formulation Laboratory transferred the process know-how and associated equipment for the pilot-scale manufacturing of an oil-in-water adjuvant to Bio Farma, Indonesias state-owned vaccine manufacturer, for subsequent formulation with H5N1 pandemic influenza vaccines. This paper describes the experience acquired and lessons learnt from this technology transfer project.

Collaboration


Dive into the Nicolas Collin's collaboration.

Top Co-Authors

Avatar

Jesus G. Valenzuela

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clarissa Teixeira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

José M. C. Ribeiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shaden Kamhawi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabiano Oliveira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Regis Gomes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge