Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Delaroque is active.

Publication


Featured researches published by Nicolas Delaroque.


Nature | 2010

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

J. Mark Cock; Lieven Sterck; Pierre Rouzé; Delphine Scornet; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Erwan Corre; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau; Marek Eliáš; Garry Farnham

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.


Archives of Virology | 2002

Phycodnaviridae– large DNA algal viruses

J. L. Van Etten; Michael C. Graves; Dieter G. Müller; Wilhelm Boland; Nicolas Delaroque

Summary. Members and prospective members of the family Phycodnaviridae are large icosahedral, dsDNA (180 to 560 kb) viruses that infect eukaryotic algae. The genomes of two phycodnaviruses have been sequenced: the 331 kb genome of Paramecium bursaria chlorella virus (PBCV-1) and more recently, the 336 kb genome of the Ectocarpus siliculosus virus (EsV-1). EsV-1 has ∼ 231 protein-encoding genes whereas, the slightly smaller PBCV-1 genome has 11 tRNA genes and ∼ 375 protein-encoding genes. Surprisingly, the two viruses only have 33 genes in common, of which 17 have no counterparts in the databases. The low number of homologous genes between the two viruses can probably be attributed to their different life styles. PBCV-1 is a lytic virus that infects a unicellular, endosymbiotic freshwater green alga whereas, EsV-1 is a lysogenic virus that infects a free-living filamentous marine brown alga. Furthermore, accumulating evidence indicates that the phycodnaviruses and their genes are ancient, thus allowing significant differences to have evolved. This review briefly describes some of the biological properties of the phycodnaviruses, focusing on PBCV-1 and EsV-1, and then compares their genomes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting

Jörg Balss; Panagiotis Papatheodorou; Mario Mehmel; Dirk Baumeister; Brigitte Hertel; Nicolas Delaroque; Franck C. Chatelain; Daniel L. Minor; James L. Van Etten; Joachim Rassow; Anna Moroni; Gerhard Thiel

K+ channels operate in the plasma membrane and in membranes of organelles including mitochondria. The mechanisms and topogenic information for their differential synthesis and targeting is unknown. This article describes 2 similar viral K+ channels that are differentially sorted; one protein (Kesv) is imported by the Tom complex into the mitochondria, the other (Kcv) to the plasma membrane. By creating chimeras we discovered that mitochondrial sorting of Kesv depends on a hierarchical combination of N- and C-terminal signals. Crucial is the length of the second transmembrane domain; extending its C terminus by ≥2 hydrophobic amino acids redirects Kesv from the mitochondrial to the plasma membrane. Activity of Kesv in the plasma membrane is detected electrically or by yeast rescue assays only after this shift in sorting. Hence only minor structural alterations in a transmembrane domain are sufficient to switch sorting of a K+ channel between the plasma membrane and mitochondria.


Journal of Molecular Evolution | 2003

Comparisons of two large phaeoviral genomes and evolutionary implications

Nicolas Delaroque; Wilhelm Boland; Dieter G. Müller; Rolf Knippers

The evolution of viral genomes has recently attracted considerable attention. We compare the sequences of two large viral genomes, EsV-1 and FirrV-1, belonging to the family of phaeoviruses which infect different species of marine brown algae. Although their genomes differ substantially in size, these viruses share similar morphologies and similar latent infection cycles. In fact, sequence comparisons show that the viruses have more than 60% of their genes in common. However, the order of genes is completely different in the two genomes, suggesting that extensive recombinational events in addition to several large deletions had occurred during the separate evolutionary routes from a common ancestor. We investigated genes encoding components of signal transduction pathways and genes encoding replicative functions in more detail. We found that the two genomes possess different, although overlapping, sets of genes in both classes, suggesting that different genes from each class were lost, perhaps randomly, after the separate evolution from an ancestral genome. Random loss would also account for the fact that more than one-third of the genes in one viral genome has no counterparts in the other genome. We speculate that the ancestral genome belonged to a cellular organism that had once invaded a primordial brown algal host.


Vaccine | 2011

A DNA vaccine encoding the E protein of West Nile Virus is protective and can be boosted by recombinant domain DIII

Anne Schneeweiss; Stefan Chabierski; Mathias Salomo; Nicolas Delaroque; Samiya Al-Robaiy; Thomas Grunwald; Kurt Bürki; Uwe G. Liebert; Sebastian Ulbert

West Nile Virus (WNV) is an emerging pathogenic flavivirus with increasing distribution worldwide. Birds are the natural host of the virus, but also mammals, including humans, can be infected. In some cases, a WNV infection can be associated with severe neurological symptoms. All currently available WNV vaccines are in the veterinary sector, and there is a need to develop safe and effective immunization technologies, which can also be used in humans. An alternative to current vaccination methods is DNA immunization. Most current DNA vaccine candidates against flaviviruses simultaneously express the viral envelope (E) and membrane (prM) proteins, which leads to the formation of virus-like particles. Here we generated a DNA plasmid, which expresses only the E-protein ectodomain. Vaccination of mice stimulated anti-WNV T-cell responses and neutralizing antibodies that were higher than those obtained after immunizing with a recombinant protein previously shown to be a protective WNV vaccine. A single dose of the plasmid was sufficient to protect animals from a lethal challenge with the virus. Moreover, immunogenicity could be boosted when DNA injection was followed by immunization with recombinant domain DIII of the E-protein. This resulted in significantly enhanced neutralizing antibody titers and a more prominent cellular immune response. The results suggest that the WNV E-protein is sufficient as a protective antigen in DNA vaccines and that protection can be significantly improved by adding a recombinant protein boost to the DNA prime.


BMC Evolutionary Biology | 2008

The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses

Nicolas Delaroque; Wilhelm Boland

BackgroundEctocarpus siliculosus virus-1 (EsV-1) is a lysogenic dsDNA virus belonging to the super family of nucleocytoplasmic large DNA viruses (NCLDV) that infect Ectocarpus siliculosus, a marine filamentous brown alga. Previous studies indicated that the viral genome is integrated into the host DNA. In order to find the integration sites of the viral genome, a genomic library from EsV-1-infected algae was screened using labelled EsV-1 DNA. Several fragments were isolated and some of them were sequenced and analyzed in detail.ResultsAnalysis revealed that the algal genome is split by a copy of viral sequences that have a high identity to EsV-1 DNA sequences. These fragments are interspersed with DNA repeats, pseudogenes and genes coding for products involved in DNA replication, integration and transposition. Some of these gene products are not encoded by EsV-1 but are present in the genome of other members of the NCLDV family. Further analysis suggests that the Ectocarpus algal genome contains traces of the integration of a large dsDNA viral genome; this genome could be the ancestor of the extant NCLDV genomes. Furthermore, several lines of evidence indicate that the EsV-1 genome might have originated in these viral DNA pieces, implying the existence of a complex integration and recombination system. A protein similar to a new class of tyrosine recombinases might be a key enzyme of this system.ConclusionOur results support the hypothesis that some dsDNA viruses are monophyletic and evolved principally through genome reduction. Moreover, we hypothesize that phaeoviruses have probably developed an original replication system.


European Journal of Phycology | 1998

A DNA virus infecting the marine brown alga Pilayella littoralis (Ectocarpales, Phaeophyceae) in culture

Ingo Maier; Susanne Wolf; Nicolas Delaroque; Dieter G. Müller; Hiroshi Kawai

A new large DNA virus (PlitV-1) infects the marine filamentous brown alga Pilayella littoralis. It was collected in Alaska and infects other P. littoralis isolates of different geographic origin. The virus has an icosahedral capsid of c. 161 nm in diameter, enclosing an electron-dense core. The genome consists of double-stranded DNA and is approximately 280 000 base pairs in size. The virus is latent in somatic cells of the host and is propagated only upon induction of the hosts reproductive organs. It causes deformed sporangia, resulting in infertility, and is structurally similar to other brown algal viruses. PCR amplification of a genomic sequence coding for part of a structural glycoprotein of the Ectocarpus siliculosus virus EsV-1 produced a fragment of similar size to that obtained with EsV-1.


Archive | 2012

The Ectocarpus Genome and Brown Algal Genomics

J. Mark Cock; Lieven Sterck; Sophia Ahmed; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Alok Arun; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Gildas Le Corguillé; Erwan Corre; Laurence Dartevelle; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau

Brown algae are important organisms both because of their key ecological roles in coastal ecosystems and because of the remarkable biological features that they have acquired during their unusual evolutionary history. The recent sequencing of the complete genome of the filamentous brown alga Ectocarpus has provided unprecedented access to the molecular processes that underlie brown algal biology. Analysis of the genome sequence, which exhibits several unusual structural features, identified genes that are predicted to play key roles in several aspects of brown algal metabolism, in the construction of the multicellular bodyplan and in resistance to biotic and abiotic stresses. Information from the genome sequence is currently being used in combination with other genomic, genetic and biochemical tools to further investigate these and other aspects of brown algal biology at the molecular level. Here, we review some of the major discoveries that emerged from the analysis of the Ectocarpus genome sequence, with a particular focus on the unusual genome structure, inferences about brown algal evolution and novel aspects of brown algal metabolism.


Advances in Botanical Research | 2012

The Ectocarpus Genome and Brown Algal Genomics: The Ectocarpus Genome Consortium

J. Mark Cock; Lieven Sterck; Sophia Ahmed; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Alok Arun; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Gildas Le Corguillé; Erwan Corre; Laurence Dartevelle; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau

Brown algae are important organisms both because of their key ecological roles in coastal ecosystems and because of the remarkable biological features that they have acquired during their unusual evolutionary history. The recent sequencing of the complete genome of the filamentous brown alga Ectocarpus has provided unprecedented access to the molecular processes that underlie brown algal biology. Analysis of the genome sequence, which exhibits several unusual structural features, identified genes that are predicted to play key roles in several aspects of brown algal metabolism, in the construction of the multicellular bodyplan and in resistance to biotic and abiotic stresses. Information from the genome sequence is currently being used in combination with other genomic, genetic and biochemical tools to further investigate these and other aspects of brown algal biology at the molecular level. Here, we review some of the major discoveries that emerged from the analysis of the Ectocarpus genome sequence, with a particular focus on the unusual genome structure, inferences about brown algal evolution and novel aspects of brown algal metabolism.


The Scientific World Journal | 2012

Coevolution of aah: a dps-like gene with the host bacterium revealed by comparative genomic analysis.

Liyan Ping; Matthias Platzer; Gaiping Wen; Nicolas Delaroque

A protein named AAH was isolated from the bacterium Microbacterium arborescens SE14, a gut commensal of the lepidopteran larvae. It showed not only a high sequence similarity to Dps-like proteins (DNA-binding proteins from starved cell) but also reversible hydrolase activity. A comparative genomic analysis was performed to gain more insights into its evolution. The GC profile of the aah gene indicated that it was evolved from a low GC ancestor. Its stop codon usage was also different from the general pattern of Actinobacterial genomes. The phylogeny of dps-like proteins showed strong correlation with the phylogeny of host bacteria. A conserved genomic synteny was identified in some taxonomically related Actinobacteria, suggesting that the ancestor genes had incorporated into the genome before the divergence of Micrococcineae from other families. The aah gene had evolved new function but still retained the typical dodecameric structure.

Collaboration


Dive into the Nicolas Delaroque's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bank Beszteri

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew E. Allen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Carl J. Carrano

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Bowler

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge