Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Derome is active.

Publication


Featured researches published by Nicolas Derome.


Philosophical Transactions of the Royal Society B | 2010

On the origin of species: insights from the ecological genomics of lake whitefish

Louis Bernatchez; Sébastien Renaut; Andrew R. Whiteley; Nicolas Derome; Julie Jeukens; Lysandre Landry; Guoqing Lu; Arne W. Nolte; Kjartan Østbye; Sean M. Rogers; Jérôme St-Cyr

In contrast to the large amount of ecological information supporting the role of natural selection as a main cause of population divergence and speciation, an understanding of the genomic basis underlying those processes is in its infancy. In this paper, we review the main findings of a long-term research programme that we have been conducting on the ecological genomics of sympatric forms of whitefish (Coregonus spp.) engaged in the process of speciation. We present this system as an example of how applying a combination of approaches under the conceptual framework of the theory of adaptive radiation has yielded substantial insight into evolutionary processes in a non-model species. We also discuss how the joint use of recent biotechnological developments will provide a powerful means to address issues raised by observations made to date. Namely, we present data illustrating the potential offered by combining next generation sequencing technologies with other genomic approaches to reveal the genomic bases of adaptive divergence and reproductive isolation. Given increasing access to these new genomic tools, we argue that non-model species studied in their ecological context such as whitefish will play an increasingly important role in generalizing knowledge of speciation.


Frontiers in Microbiology | 2014

Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries

Martin S. Llewellyn; Sébastien Boutin; Seyed Hossein Hoseinifar; Nicolas Derome

Indigenous microbiota play a critical role in the lives of their vertebrate hosts. In human and mouse models it is increasingly clear that innate and adaptive immunity develop in close concert with the commensal microbiome. Furthermore, several aspects of digestion and nutrient metabolism are governed by intestinal microbiota. Research on teleosts has responded relatively slowly to the introduction of massively parallel sequencing procedures in microbiomics. Nonetheless, progress has been made in biotic and gnotobiotic zebrafish models, defining a core microbiome and describing its role in development. However, microbiome research in other teleost species, especially those important from an aquaculture perspective, has been relatively slow. In this review, we examine progress in teleost microbiome research to date. We discuss teleost microbiomes in health and disease, microbiome ontogeny, prospects for successful microbiome manipulation (especially in an aquaculture setting) and attempt to identify important future research themes. We predict an explosion in research in this sector in line with the increasing global demand for fish protein, and the need to find sustainable approaches to improve aquaculture yield. The reduced cost and increasing ease of next generation sequencing technologies provides the technological backing, and the next 10 years will be an exciting time for teleost microbiome research.


Molecular Ecology | 2006

Parallelism in gene transcription among sympatric lake whitefish ( Coregonus clupeaformis Mitchill) ecotypes

Nicolas Derome; Pierre Duchesne; Louis Bernatchez

We tested the hypothesis that phenotypic parallelism between dwarf and normal whitefish ecotypes (Coregonus clupeaformis, Salmonidae) is accompanied by parallelism in gene transcription. The most striking phenotypic differences between these forms implied energetic metabolism and swimming activity. Therefore, we predicted that genes showing parallel expression should mainly belong to functional groups associated with these phenotypes. Transcriptome profiles were obtained from white muscle by using a 3557 cDNA gene microarray developed for the Atlantic salmon (Salmo salar). A total of 1181 genes expressed in both lake populations hybridized on the array. Significant differential expression between ecotypes was detected for 134 (11.3%) and 195 (16.5%) gene clones in Cliff Lake and Indian Pond, respectively. Fifty‐one genes (4.3%) showed parallel differential expression between lakes, among which 35 were expressed in opposite directions. Sixteen genes (1.35%) showed true parallelism of transcription, which mainly belonged to energetic metabolism and regulation of muscle contraction functional groups. Variance in expression was significantly reduced for these genes compared to those not showing directionality in parallelism of expression. Candidate genes associated with parallelism in swimming activity and energetic metabolism based on their level and variance in expression were identified. These results add to the growing evidence that parallel phenotypic evolution also involves parallelism at both the genotypic and regulatory level, which may at least partly be associated with genetic constraints. It also provides further evidence for the determinant role of divergent natural selection in driving phenotypic divergence, and perhaps reproductive isolation, in the adaptive radiation of lake whitefish. This study adds to a nascent field employing microarrays as powerful tools for investigating the evolutionary processes of adaptive divergence among natural populations.


Molecular Ecology | 2008

The transcriptomics of life-history trade-offs in whitefish species pairs (Coregonus sp.)

Jérôme St-Cyr; Nicolas Derome; Louis Bernatchez

Despite the progress achieved in elucidating the ecological mechanisms of adaptive radiation, there has been little focus on documenting the extent of adaptive differentiation in physiological functions during this process. Moreover, a thorough understanding of the genomic basis underlying phenotypic adaptive divergence is still in its infancy. One important evolutionary process for which causal genetic mechanisms are largely unknown pertains to life‐history trade‐offs. We analysed patterns of gene transcription in liver tissue of sympatric dwarf and normal whitefish from two natural lakes, as well as from populations reared in controlled environments, using a 16 006‐gene cDNA microarray in order to: (i) document the extent of physiological adaptive divergence between sympatric dwarf and normal species pairs, and (ii) explore the molecular mechanisms of differential life history trade‐offs between growth and survival potentially involved in their adaptive divergence. In the two natural lakes, 6.45% of significantly transcribed genes showed regulation either in parallel fashion (2.39%) or in different directions (4.06%). Among genes showing parallelism in regulation patterns, we observed a higher proportion of over‐expressed genes in dwarf relative to normal whitefish (70.6%). Patterns observed in controlled conditions were also generally congruent with those observed in natural populations. Dwarf whitefish consistently showed significant over‐expression of genes potentially associated with survival through enhanced activity (energy metabolism, iron homeostasis, lipid metabolism, detoxification), whereas more genes associated with growth (protein synthesis, cell cycle, cell growth) were generally down‐regulated in dwarf relative to normal whitefish. Overall, parallelism in patterns of gene transcription, as well as patterns of interindividual variation across controlled and natural environments, provide strong indirect evidence for the role of selection in the evolution of differential regulation of genes involving a vast array of potentially adaptive physiological processes between dwarf and normal whitefish. Our results also provide a first mechanistic, genomic basis for the observed trade‐off in life‐history traits distinguishing dwarf and normal whitefish species pairs, wherein enhanced survival via more active swimming, necessary for increased foraging and predator avoidance, engages energetic costs that translate into slower growth rate and reduced fecundity in dwarf relative to normal whitefish.


Philosophical Transactions of the Royal Society B | 2012

Genome-wide patterns of divergence during speciation: the lake whitefish case study

Sébastien Renaut; N. Maillet; Eric Normandeau; C. Sauvage; Nicolas Derome; Sean M. Rogers; Louis Bernatchez

The nature, size and distribution of the genomic regions underlying divergence and promoting reproductive isolation remain largely unknown. Here, we summarize ongoing efforts using young (12 000 yr BP) species pairs of lake whitefish (Coregonus clupeaformis) to expand our understanding of the initial genomic patterns of divergence observed during speciation. Our results confirmed the predictions that: (i) on average, phenotypic quantitative trait loci (pQTL) show higher FST values and are more likely to be outliers (and therefore candidates for being targets of divergent selection) than non-pQTL markers; (ii) large islands of divergence rather than small independent regions under selection characterize the early stages of adaptive divergence of lake whitefish; and (iii) there is a general trend towards an increase in terms of numbers and size of genomic regions of divergence from the least (East L.) to the most differentiated species pair (Cliff L.). This is consistent with previous estimates of reproductive isolation between these species pairs being driven by the same selective forces responsible for environment specialization. Altogether, dwarf and normal whitefish species pairs represent a continuum of both morphological and genomic differentiation contributing to ecological speciation. Admittedly, much progress is still required to more finely map and circumscribe genomic islands of speciation. This will be achieved through the use of next generation sequencing data but also through a better quantification of phenotypic traits moulded by selection as organisms adapt to new environmental conditions.


Molecular Ecology | 2011

SNP signatures of selection on standing genetic variation and their association with adaptive phenotypes along gradients of ecological speciation in lake whitefish species pairs (Coregonus spp.).

Sébastien Renaut; Arne W. Nolte; Sean M. Rogers; Nicolas Derome; Louis Bernatchez

As populations adapt to novel environments, divergent selection will promote heterogeneous genomic differentiation via reductions in gene flow for loci underlying adaptive traits. Using a data set of over 100 SNP markers, genome scans were performed to investigate the effect of natural selection maintaining differentiation in five lakes harbouring sympatric pairs of normal and dwarf lake whitefish (Coregonus clupeaformis). A variable proportion of SNPs (between 0% and 12%) was identified as outliers, which corroborated the predicted intensity of competitive interactions unique to each lake. Moreover, strong reduction in heterozygosity was typically observed for outlier loci in dwarf but not in normal whitefish, indicating that directional selection has been acting on standing genetic variation more intensively in dwarf whitefish. SNP associations in backcross hybrid progeny identified 16 genes exhibiting genotype–phenotype associations for four adaptive traits (growth, swimming activity, gill rakers and condition factor). However, neither simple relationship between elevated levels of genetic differentiation with adaptive phenotype nor conspicuous genetic signatures for parallelism at outlier loci were detected, which underscores the importance of independent evolution among lakes. The integration of phenotypic, transcriptomic and functional genomic information identified two candidate genes (sodium potassium ATPase and triosephosphate isomerase) involved in the recent ecological divergence of lake whitefish. Finally, the identification of several markers under divergent selection suggests that many genes, in an environment‐specific manner, are recruited by selection and ultimately contributed to the repeated ecological speciation of a dwarf phenotype.


Genetics | 2008

The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (Coregonus sp.)

Andrew R. Whiteley; Nicolas Derome; Sean M. Rogers; Jérôme St-Cyr; Jérôme Laroche; Aurélie Labbe; Arne W. Nolte; Sébastien Renaut; Julie Jeukens; Louis Bernatchez

We used microarrays and a previously established linkage map to localize the genetic determinants of brain gene expression for a backcross family of lake whitefish species pairs (Coregonus sp.). Our goals were to elucidate the genomic distribution and sex specificity of brain expression QTL (eQTL) and to determine the extent to which genes controlling transcriptional variation may underlie adaptive divergence in the recently evolved dwarf (limnetic) and normal (benthic) whitefish. We observed a sex bias in transcriptional genetic architecture, with more eQTL observed in males, as well as divergence in genome location of eQTL between the sexes. Hotspots of nonrandom aggregations of up to 32 eQTL in one location were observed. We identified candidate genes for species pair divergence involved with energetic metabolism, protein synthesis, and neural development on the basis of colocalization of eQTL for these genes with eight previously identified adaptive phenotypic QTL and four previously identified outlier loci from a genome scan in natural populations. Eighty-eight percent of eQTL-phenotypic QTL colocalization involved growth rate and condition factor QTL, two traits central to adaptive divergence between whitefish species pairs. Hotspots colocalized with phenotypic QTL in several cases, revealing possible locations where master regulatory genes, such as a zinc-finger protein in one case, control gene expression directly related to adaptive phenotypic divergence. We observed little evidence of colocalization of brain eQTL with behavioral QTL, which provides insight into the genes identified by behavioral QTL studies. These results extend to the transcriptome level previous work illustrating that selection has shaped recent parallel divergence between dwarf and normal lake whitefish species pairs and that metabolic, more than morphological, differences appear to play a key role in this divergence.


Genetics | 2008

Pervasive Sex-Linked Effects on Transcription Regulation as Revealed by Expression Quantitative Trait Loci Mapping in Lake Whitefish Species Pairs (Coregonus Sp., Salmonidae)

Nicolas Derome; Bérénice Bougas; Sean M. Rogers; Andrew R. Whiteley; Aurélie Labbe; Jérôme Laroche; Louis Bernatchez

Mapping of expression quantitative trait loci (eQTL) is a powerful means for elucidating the genetic architecture of gene regulation. Yet, eQTL mapping has not been applied toward investigating the regulation architecture of genes involved in the process of population divergence, ultimately leading to speciation events. Here, we conducted an eQTL mapping experiment to compare the genetic architecture of transcript regulation in adaptive traits, differentiating the recently evolved limnetic (dwarf) and benthic (normal) species pairs of lake whitefish. The eQTL were mapped in three data sets derived from an F1 hybrid-dwarf backcrossed family: the entire set of 66 genotyped individuals and the two sexes treated separately. We identified strikingly more eQTL in the female data set (174), compared to both male (54) and combined (33) data sets. The majority of these genes were not differentially expressed between male and female progeny of the backcross family, thus providing evidence for a strong pleiotropic sex-linked effect in transcriptomic regulation. The subtelomeric region of a linkage group segregating in females encompassed >50% of all eQTL, which exhibited the most pronounced additive effects. We also conducted a direct comparison of transcriptomic profiles between pure dwarf and normal progeny reared in controlled conditions. We detected 34 differentially expressed transcripts associated with eQTL segregating only in sex-specific data sets and mostly belonging to functional groups that differentiate dwarf and normal whitefish in natural populations. Therefore, these eQTL are not related to interindividual variation, but instead to the adaptive and historical genetic divergence between dwarf and normal whitefish. This study exemplifies how the integration of genetic and transcriptomic data offers a strong means for dissecting the functional genomic response to selection by separating mapping family-specific effects from genetic factors under selection, potentially involved in the phenotypic divergence of natural populations.


PLOS ONE | 2013

Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota

Sébastien Boutin; Louis Bernatchez; Céline Audet; Nicolas Derome

Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis) and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities’ samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1) the abundance of probiotic-like bacteria decreased after stress exposure; and 2) pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier.


The ISME Journal | 2016

The biogeography of the atlantic salmon (Salmo salar) gut microbiome.

Martin S. Llewellyn; Philip McGinnity; Melanie Dionne; Justine Letourneau; Florian Thonier; Gary R. Carvalho; Simon Creer; Nicolas Derome

Although understood in many vertebrate systems, the natural diversity of host-associated microbiota has been little studied in teleosts. For migratory fishes, successful exploitation of multiple habitats may affect and be affected by the composition of the intestinal microbiome. We collected 96 Salmo salar from across the Atlantic encompassing both freshwater and marine phases. Dramatic differences between environmental and gut bacterial communities were observed. Furthermore, community composition was not significantly impacted by geography. Instead life-cycle stage strongly defined both the diversity and identity of microbial assemblages in the gut, with evidence for community destabilisation in migratory phases. Mycoplasmataceae phylotypes were abundantly recovered in all life-cycle stages. Patterns of Mycoplasmataceae phylotype recruitment to the intestinal microbial community among sites and life-cycle stages support a dual role for deterministic and stochastic processes in defining the composition of the S. salar gut microbiome.

Collaboration


Dive into the Nicolas Derome's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Boutin

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Céline Audet

Université du Québec à Rimouski

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Renaut

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge