Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Desneux is active.

Publication


Featured researches published by Nicolas Desneux.


Nature | 2012

Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services

Yanhui Lu; Kongming Wu; Yuying Jiang; Yuyuan Guo; Nicolas Desneux

Over the past 16 years, vast plantings of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have helped to control several major insect pests and reduce the need for insecticide sprays. Because broad-spectrum insecticides kill arthropod natural enemies that provide biological control of pests, the decrease in use of insecticide sprays associated with Bt crops could enhance biocontrol services. However, this hypothesis has not been tested in terms of long-term landscape-level impacts. On the basis of data from 1990 to 2010 at 36 sites in six provinces of northern China, we show here a marked increase in abundance of three types of generalist arthropod predators (ladybirds, lacewings and spiders) and a decreased abundance of aphid pests associated with widespread adoption of Bt cotton and reduced insecticide sprays in this crop. We also found evidence that the predators might provide additional biocontrol services spilling over from Bt cotton fields onto neighbouring crops (maize, peanut and soybean). Our work extends results from general studies evaluating ecological effects of Bt crops by demonstrating that such crops can promote biocontrol services in agricultural landscapes.


Journal of Pest Science | 2010

Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control.

Nicolas Desneux; Eric Wajnberg; Kris A. G. Wyckhuys; Giovanni Burgio; Salvatore Arpaia; Consuelo A. Narváez-Vasquez; Joel González-Cabrera; Diana Catalán Ruescas; Elisabeth Tabone; Jacques Frandon; Jeannine Pizzol; Christine Poncet; Tomas Cabello; Alberto Urbaneja

The tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating pest of tomato originating from South America. After its initial detection in eastern Spain in 2006, it rapidly invaded various other European countries and spread throughout the Mediterranean basin. If no control measures are taken, then the pest can cause up to 80–100% yield losses in tomato crops in recently invaded areas and may pose a threat to both greenhouse and open-field tomato production. The exceptional speed and extent of T. absoluta invasion have called for studies documenting its biology and ecology, while indicating an urgent need for efficient and sustainable management methods. The development of approaches to manage T. absoluta would be facilitated through a detailed revision of information on this pest in its area of origin. This review combines information on the invasion by T. absoluta, its ecology, and potential management strategies, including data that may help the implementation of efficient biological control programs. These programs, together with a variety of other management tactics, may allow efficient integrated pest management of T. absoluta in Europe and Mediterranean Basin countries.


Annual Review of Entomology | 2011

Ecology and Management of the Soybean Aphid in North America

David W. Ragsdale; Douglas A. Landis; Jacques Brodeur; George E. Heimpel; Nicolas Desneux

The soybean aphid, Aphis glycines Matsumura, has become the single most important arthropod pest of soybeans in North America. Native to Asia, this invasive species was first discovered in North America in July 2000 and has rapidly spread throughout the northcentral United States, much of southeastern Canada, and the northeastern United States. In response, important elements of the ecology of the soybean aphid in North America have been elucidated, with economic thresholds, sampling plans, and chemical control recommendations widely adopted. Aphid-resistant soybean varieties were available to growers in 2010. The preexisting community of aphid natural enemies has been highly effective in suppressing aphid populations in many situations, and classical biological control efforts have focused on the addition of parasitoids of Asian origin. The keys to sustainable management of this pest include understanding linkages between the soybean aphid and other introduced and native species in a landscape context along with continued development of aphid-resistant varieties.


Journal of Pest Science | 2011

The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production

Nicolas Desneux; María G. Luna; Thomas Guillemaud; Alberto Urbaneja

The economic and ecological effects of invasive species, notably pests (Mack et al. 2000; Suckling and Brockerhoff 2010; Ragsdale et al. 2011), are now widely recognized (Thomas 1999; Pysek and Richardson 2010). The South American tomato pinworm Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is an invasive pest, native to South America which was detected in eastern Spain at the end of 2006. Since then, T. absoluta has spread to the European and the North African Mediterranean Basin countries where it has become a serious agricultural threat to tomato production in both greenhouse and outdoor tomato crops (see Desneux et al. 2010 for a thorough review). This pest spreads rapidly and its status in the world has completely changed within only a few years from a South American tomato pest to a major threat to tomato world production. In this letter, we update the available information on the current distribution of T. absoluta in the world. Moreover, we describe and discuss the threat represented by the rapid spread of T. absoluta and how this pest is going to change world tomato production.


Pest Management Science | 2012

The non-target impact of spinosyns on beneficial arthropods

Antonio Biondi; Veerle Mommaerts; Guy Smagghe; Elisa Viñuela; Lucia Zappalà; Nicolas Desneux

Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods.


PLOS ONE | 2013

Do Biopesticides Affect the Demographic Traits of a Parasitoid Wasp and Its Biocontrol Services through Sublethal Effects

Antonio Biondi; Lucia Zappalà; John D. Stark; Nicolas Desneux

Pesticide risk assessments are usually based on short-term acute toxicity tests, while longer-term population dynamic related traits, critical to the success of biological control and Integrated Pest Management (IPM) programs, are often overlooked. This is increasingly important with respect to new biopesticides that frequently cause no short-term acute effects, but that can induce multiple physiological and behavioral sublethal effects, leading to a decrease in population growth and ecosystem services. In this study we assessed the lethal and sublethal effects of six biopesticides [abamectin, azadirachtin, Bacillus thuringiensis, borax plus citrus oil (Prev-Am®), emamectin benzoate, and spinosad], used in tomato crops to control the invasive pest Tuta absoluta (Lepidoptera: Gelechiidae), on adults and pupae of the parasitoid Bracon nigricans (Hymenoptera: Braconidae). Data on female survival and production of female offspring were used to calculate population growth indexes as a measure of population recovery after pesticide exposure. Spinosad caused 100% and 80% mortality in exposed adults (even 10 d after the treatment) and pupae, respectively. Although most of the biopesticides had low levels of acute toxicity, multiple sublethal effects were observed. The biocontrol activity of both females that survived 1-h and 10-d old residues, and females that emerged from topically treated pupae was significantly affected by the application of the neurotoxic insecticides emamectin benzoate and abamectin. Furthermore, very low B. nigricans demographic growth indices were estimated for these two insecticides, indicating potential local extinction of the wasp populations. Among the tested products, Bt proved to be the safest for B. nigricans adults and pupae. Our findings emphasize that acute toxicity assessment alone cannot fully predict the actual impact of pesticides on non-target parasitoids. Thus, sublethal effects related to the species specific life-history variables must be carefully considered in order to assess pesticide risks and to incorporate new pesticides, including biopesticides, into IPM programmes.


Annual Review of Entomology | 2016

Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs

Raul Narciso C. Guedes; Guy Smagghe; John D. Stark; Nicolas Desneux

More than six decades after the onset of wide-scale commercial use of synthetic pesticides and more than fifty years after Rachel Carsons Silent Spring, pesticides, particularly insecticides, arguably remain the most influential pest management tool around the globe. Nevertheless, pesticide use is still a controversial issue and is at the regulatory forefront in most countries. The older generation of insecticide groups has been largely replaced by a plethora of novel molecules that exhibit improved human and environmental safety profiles. However, the use of such compounds is guided by their short-term efficacy; the indirect and subtler effects on their target species, namely arthropod pest species, have been neglected. Curiously, comprehensive risk assessments have increasingly explored effects on nontarget species, contrasting with the majority of efforts focused on the target arthropod pest species. The present review mitigates this shortcoming by hierarchically exploring within an ecotoxicology framework applied to integrated pest management the myriad effects of insecticide use on arthropod pest species.


Oecologia | 2009

Multifaceted determinants of host specificity in an aphid parasitoid

Nicolas Desneux; Ruth J. Barta; Kim A. Hoelmer; Keith R. Hopper; George E. Heimpel

The host specificity of insect parasitoids and herbivores is thought to be shaped by a suite of traits that mediate host acceptance and host suitability. We conducted laboratory experiments to identify mechanisms shaping the host specificity of the aphid parasitoid Binodoxys communis. Twenty species of aphids were exposed to B. communis females in microcosms, and detailed observations and rearing studies of 15 of these species were done to determine whether patterns of host use resulted from variation in factors such as host acceptance or variation in host suitability. Six species of aphids exposed to B. communis showed no signs of parasitism. Four of these species were not recognized as hosts and two effectively defended themselves from attack by B. communis. Other aphid species into which parasitoids laid eggs had low suitability as hosts. Parasitoid mortality occurred in the egg or early larval stages for some of these hosts but for others it occurred in late larval stages. Two hypotheses explaining low suitability were investigated in separate experiments: the presence of endosymbiotic bacteria conferring resistance to parasitoids, and aphids feeding on toxic plants. An association between resistance and endosymbiont infection was found in one species (Aphis craccivora), and evidence for the toxic plant hypothesis was found for the milkweed aphids Aphis asclepiadis and Aphis nerii. This research highlights the multifaceted nature of factors determining host specificity in parasitoids.


Environment International | 2016

Are bee diseases linked to pesticides? - A brief review.

Francisco Sánchez-Bayo; Dave Goulson; Francesco Pennacchio; Francesco Nazzi; Koichi Goka; Nicolas Desneux

The negative impacts of pesticides, in particular insecticides, on bees and other pollinators have never been disputed. Insecticides can directly kill these vital insects, whereas herbicides reduce the diversity of their food resources, thus indirectly affecting their survival and reproduction. At sub-lethal level (<LD50), neurotoxic insecticide molecules are known to influence the cognitive abilities of bees, impairing their performance and ultimately impacting on the viability of the colonies. In addition, widespread systemic insecticides appear to have introduced indirect side effects on both honey bees and wild bumblebees, by deeply affecting their health. Immune suppression of the natural defences by neonicotinoid and phenyl-pyrazole (fipronil) insecticides opens the way to parasite infections and viral diseases, fostering their spread among individuals and among bee colonies at higher rates than under conditions of no exposure to such insecticides. This causal link between diseases and/or parasites in bees and neonicotinoids and other pesticides has eluded researchers for years because both factors are concurrent: while the former are the immediate cause of colony collapses and bee declines, the latter are a key factor contributing to the increasing negative impact of parasitic infections observed in bees in recent decades.


Ecotoxicology and Environmental Safety | 2008

Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? ☆

R. Ramirez-Romero; Nicolas Desneux; Axel Decourtye; A. Chaffiol; M.H. Pham-Delègue

Genetically modified Bt crops are increasingly used worldwide but side effects and especially sublethal effects on beneficial insects remain poorly studied. Honey bees are beneficial insects for natural and cultivated ecosystems through pollination. The goal of the present study was to assess potential effects of two concentrations of Cry1Ab protein (3 and 5000 ppb) on young adult honey bees. Following a complementary bioassay, our experiments evaluated effects of the Cry1Ab on three major life traits of young adult honey bees: (a) survival of honey bees during sub-chronic exposure to Cry1Ab, (b) feeding behaviour, and (c) learning performance at the time that honey bees become foragers. The latter effect was tested using the proboscis extension reflex (PER) procedure. The same effects were also tested using a chemical pesticide, imidacloprid, as positive reference. The tested concentrations of Cry1Ab protein did not cause lethal effects on honey bees. However, honey bee feeding behaviour was affected when exposed to the highest concentration of Cry1Ab protein, with honey bees taking longer to imbibe the contaminated syrup. Moreover, honey bees exposed to 5000 ppb of Cry1Ab had disturbed learning performances. Honey bees continued to respond to a conditioned odour even in the absence of a food reward. Our results show that transgenic crops expressing Cry1Ab protein at 5000 ppb may affect food consumption or learning processes and thereby may impact honey bee foraging efficiency. The implications of these results are discussed in terms of risks of transgenic Bt crops for honey bees.

Collaboration


Dive into the Nicolas Desneux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang-Ying Niu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Peng Han

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiwu Gao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Christine Poncet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jeannine Pizzol

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwige Amiens-Desneux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Tabone

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge