Nicolas E. Buchler
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas E. Buchler.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Nicolas E. Buchler; Ulrich Gerland; Terence Hwa
Cells receive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate specific genetic responses. Here we explore theoretically the potentials and limitations of combinatorial signal integration at the level of cis-regulatory transcription control. Our analysis suggests that many complex transcription-control functions of the type encountered in higher eukaryotes are already implementable within the much simpler bacterial transcription system. Using a quantitative model of bacterial transcription and invoking only specific protein–DNA interaction and weak glue-like interaction between regulatory proteins, we show explicit schemes to implement regulatory logic functions of increasing complexity by appropriately selecting the strengths and arranging the relative positions of the relevant protein-binding DNA sequences in the cis-regulatory region. The architectures that emerge are naturally modular and evolvable. Our results suggest that the transcription regulatory apparatus is a “programmable” computing machine, belonging formally to the class of Boltzmann machines. Crucial to our results is the ability to regulate gene expression at a distance. In bacteria, this can be achieved for isolated genes via DNA looping controlled by the dimerization of DNA-bound proteins. However, if adopted extensively in the genome, long-distance interaction can cause unintentional intergenic cross talk, a detrimental side effect difficult to overcome by the known bacterial transcription-regulation systems. This may be a key factor limiting the genome-wide adoption of complex transcription control in bacteria. Implications of our findings for combinatorial transcription control in eukaryotes are discussed.
Molecular Systems Biology | 2009
Nicolas E. Buchler; Frederick R. Cross
Ultrasensitive responses are crucial for cellular regulation. Protein sequestration, where an active protein is bound in an inactive complex by an inhibitor, can potentially generate ultrasensitivity. Here, in a synthetic genetic circuit in budding yeast, we show that sequestration of a basic leucine zipper transcription factor by a dominant‐negative inhibitor converts a graded transcriptional response into a sharply ultrasensitive response, with apparent Hill coefficients up to 12. A simple quantitative model for this genetic network shows that both the threshold and the degree of ultrasensitivity depend upon the abundance of the inhibitor, exactly as we observed experimentally. The abundance of the inhibitor can be altered by simple mutation; thus, ultrasensitive responses mediated by protein sequestration are easily tuneable. Gene duplication of regulatory homodimers and loss‐of‐function mutations can create dominant negatives that sequester and inactivate the original regulator. The generation of flexible ultrasensitive responses is an unappreciated adaptive advantage that could explain the frequent evolutionary emergence of dominant negatives.
Philosophical Transactions of the Royal Society B | 2011
Frederick R. Cross; Nicolas E. Buchler; Jan M. Skotheim
The molecular networks regulating the G1–S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.
Nature | 2015
Yu Tanouchi; Anand Pai; Heungwon Park; Shuqiang Huang; Rumen Stamatov; Nicolas E. Buchler; Lingchong You
During bacterial growth, a cell approximately doubles in size before division, after which it splits into two daughter cells. This process is subjected to the inherent perturbations of cellular noise and thus requires regulation for cell-size homeostasis. The mechanisms underlying the control and dynamics of cell size remain poorly understood owing to the difficulty in sizing individual bacteria over long periods of time in a high-throughput manner. Here we measure and analyse long-term, single-cell growth and division across different Escherichia coli strains and growth conditions. We show that a subset of cells in a population exhibit transient oscillations in cell size with periods that stretch across several (more than ten) generations. Our analysis reveals that a simple law governing cell-size control—a noisy linear map—explains the origins of these cell-size oscillations across all strains. This noisy linear map implements a negative feedback on cell-size control: a cell with a larger initial size tends to divide earlier, whereas one with a smaller initial size tends to divide later. Combining simulations of cell growth and division with experimental data, we demonstrate that this noisy linear map generates transient oscillations, not just in cell size, but also in constitutive gene expression. Our work provides new insights into the dynamics of bacterial cell-size regulation with implications for the physiological processes involved.
Nature | 2015
Mian Zhou; Wei Wang; Sargis Karapetyan; Musoki Mwimba; Jorge Marqués; Nicolas E. Buchler; Xinnian Dong
Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism’s metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant’s redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.
Molecular Systems Biology | 2012
Yu Tanouchi; Anand Pai; Nicolas E. Buchler; Lingchong You
Programmed death is often associated with a bacterial stress response. This behavior appears paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is ‘altruistic’: the killing of some cells can benefit the survivors through release of ‘public goods’. However, the conditions where bacterial programmed death becomes advantageous have not been unambiguously demonstrated experimentally. Here, we determined such conditions by engineering tunable, stress‐induced altruistic death in the bacterium Escherichia coli. Using a mathematical model, we predicted the existence of an optimal programmed death rate that maximizes population growth under stress. We further predicted that altruistic death could generate the ‘Eagle effect’, a counter‐intuitive phenomenon where bacteria appear to grow better when treated with higher antibiotic concentrations. In support of these modeling insights, we experimentally demonstrated both the optimality in programmed death rate and the Eagle effect using our engineered system. Our findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death, and have implications for a design of antibiotic treatment.
Cell Cycle | 2005
Vincent Archambault; Nicolas E. Buchler; Gwendolyn M. Wilmes; Matthew D. Jacobson; Frederick R. Cross
We recently reported that the ‘hydrophobic patch’ (HP) of the Saccharomyces cerevisiae S-phase cyclin Clb5 facilitates its interaction with Orc6 (via its Cy or RXL motif), providing a mechanism that helps prevent re-replication from individual origins.1 This is the first finding of a biological function for an interaction between a cyclin and a cyclin-binding motif (Cy or RXL motif) in a target protein in Saccharomyces cerevisiae. It is also the first such example involving a B-type cyclin in any organism. Yet, some of our observations as well as work from other groups suggest that HP-RXL interactions are functionally important for cyclin-Cdk signaling to other targets. The evolutionary conservation of the HP motif suggests that it allows cyclins to carry out important and specialized functions.
Systems and Synthetic Biology | 2007
Georg Fritz; Nicolas E. Buchler; Terence Hwa; Ulrich Gerland
The ability to learn and respond to recurrent events depends on the capacity to remember transient biological signals received in the past. Moreover, it may be desirable to remember or ignore these transient signals conditioned upon other signals that are active at specific points in time or in unique environments. Here, we propose a simple genetic circuit in bacteria that is capable of conditionally memorizing a signal in the form of a transcription factor concentration. The circuit behaves similarly to a “data latch” in an electronic circuit, i.e. it reads and stores an input signal only when conditioned to do so by a “read command.” Our circuit is of the same size as the well-known genetic toggle switch (an unconditional latch) which consists of two mutually repressing genes, but is complemented with a “regulatory front end” involving protein heterodimerization as a simple way to implement conditional control. Deterministic and stochastic analysis of the circuit dynamics indicate that an experimental implementation is feasible based on well-characterized genes and proteins. It is not known, to which extent molecular networks are able to conditionally store information in natural contexts for bacteria. However, our results suggest that such sequential logic elements may be readily implemented by cells through the combination of existing protein–protein interactions and simple transcriptional regulation.
Genome Biology and Evolution | 2016
Pauline Schaap; Israel Barrantes; Patrick Minx; Narie Sasaki; Robert Anderson; Marianne Bénard; Kyle K. Biggar; Nicolas E. Buchler; Ralf Bundschuh; Xiao Chen; Catrina C. Fronick; Lucinda Fulton; Georg Golderer; Niels Jahn; Volker Knoop; Laura F. Landweber; Chrystelle Maric; Dennis L. Miller; Angelika A. Noegel; Rob Peace; Gérard Pierron; Taeko Sasaki; Mareike Schallenberg-Rüdinger; Michael Schleicher; Reema Singh; Thomas Spaller; Kenneth B. Storey; Takamasa Suzuki; Chad Tomlinson; John J. Tyson
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.
Molecular Biology of the Cell | 2016
Anthony J. Burnetti; Mert Aydin; Nicolas E. Buchler
The interaction of two oscillators (cell division cycle and yeast metabolic cycle) with different frequencies is studied. Cell cycle Start is coupled with the initiation of high oxygen consumption and breakdown of storage carbohydrates across diverse strains and different growth rates.