Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Flipo is active.

Publication


Featured researches published by Nicolas Flipo.


Water Resources Research | 2016

An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope

Michael Durand; Colin J. Gleason; Pierre-André Garambois; David M. Bjerklie; Laurence C. Smith; Hélène Roux; Ernesto Rodriguez; Paul D. Bates; Tamlin M. Pavelsky; Jérôme Monnier; X. Chen; G. Di Baldassarre; J.-M. Fiset; Nicolas Flipo; Renato Prata de Moraes Frasson; J. Fulton; N. Goutal; Faisal Hossain; E. Humphries; J. T. Minear; Micah Mukolwe; Jeffrey C. Neal; Sophie Ricci; Brett F. Sanders; Gj-P Schumann; Jochen E. Schubert; Lauriane Vilmin

The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020 will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily ‘‘remote sensing’’ measurements derived from hydraulic models corrupted with minimal observational errors. Five discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error (RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative nresiduals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to improve results.


Science of The Total Environment | 2015

Pluri-annual sediment budget in a navigated river system: The Seine River (France)

Lauriane Vilmin; Nicolas Flipo; Chantal De Fouquet; Michel Poulin

This study aims at quantifying pluri-annual Total Suspended Matter (TSM) budgets, and notably the share of river navigation in total re-suspension at a long-term scale, in the Seine River along a 225 km stretch including the Paris area. Erosion is calculated based on the transport capacity concept with an additional term for the energy dissipated by river navigation. Erosion processes are fitted for the 2007-2011 period based on i) a hydrological typology of sedimentary processes and ii) a simultaneous calibration and retrospective validation procedure. The correlation between observed and simulated TSM concentrations is higher than 0.91 at all monitoring stations. A variographic analysis points out the possible sources of discrepancies between the variabilities of observed and simulated TSM concentrations at three time scales: sub-weekly, monthly and seasonally. Most of the error on the variability of simulated concentrations concerns sub-weekly variations and may be caused by boundary condition estimates rather than modeling of in-river processes. Once fitted, the model permits to quantify that only a small fraction of the TSM flux sediments onto the river bed (<0.3‰). The river navigation contributes significantly to TSM re-suspension in average (about 20%) and during low flow periods (over 50%). Given the significant impact that sedimentary processes can have on the water quality of rivers, these results highlight the importance of taking into account river navigation as a source of re-suspension, especially during low flow periods when biogeochemical processes are the most intense.


Water Research | 2015

Modelling the fate of nitrite in an urbanized river using experimentally obtained nitrifier growth parameters

Mélanie Raimonet; Lauriane Vilmin; Nicolas Flipo; Vincent Rocher; Anniet M. Laverman

Maintaining low nitrite concentrations in aquatic systems is a major issue for stakeholders due to nitrites high toxicity for living species. This study reports on a cost-effective and realistic approach to study nitrite dynamics and improve its modelling in human-impacted river systems. The implementation of different nitrifying biomasses to model riverine communities and waste water treatment plant (WWTP)-related communities enabled us to assess the impact of a major WWTP effluent on in-river nitrification dynamics. The optimal kinetic parameters and biomasses of the different nitrifying communities were determined and validated by coupling laboratory experiments and modelling. This approach was carried out in the Seine River, as an example of a large human-impacted river with high nitrite concentrations. The simulation of nitrite fate was performed at a high spatial and temporal resolution (Δt = 10 min, dx¯ = 500 m) including water and sediment layers along a 220 km stretch of the Seine River for a 6-year period (2007-2012). The model outputs were in good agreement with the peak of nitrite downstream the WWTP as well as its slow decrease towards the estuary. Nitrite persistence between the WWTP and the estuary was mostly explained by similar production and consumption rates of nitrite in both water and sediment layers. The sediment layer constituted a significant source of nitrite, especially during high river discharges (0.1-0.4 mgN h(-1) m(-2)). This points out how essential it is to represent the benthic layer in river water quality models, since it can constitute a source of nitrite to the water-column. As a consequence of anthropogenic emissions and in-river processes, nitrite fluxes to the estuary were significant and varied from 4.1 to 5.5 TN d(-1) in low and high water discharge conditions, respectively, over the 2007-2012 period. This study provides a methodology that can be applied to any anthropized river to realistically parametrize autochthonous and WWTP-related nitrifier communities and simulate nitrite dynamics. Based on simulation analysis, it is shown that high spatio-temporal resolution hydro-ecological models are efficient to 1) estimate water quality criteria and 2) forecast the effect of future management strategies. Process-based simulations constitute essential tools to complete our understanding of nutrient cycling, and to decrease monitoring costs in the context of water quality and eutrophication management in river ecosystems.


Biogeochemistry | 2015

Impact of hydro-sedimentary processes on the dynamics of soluble reactive phosphorus in the Seine River

Lauriane Vilmin; Josette Garnier; Gilles Billen; Jean-Marie Mouchel; Michel Poulin; Nicolas Flipo

This paper focuses on soluble reactive phosphorus (SRP) dynamics along a 225xa0km stretch of the Seine River, including the Paris urban area, for the 2007–2011 period. The impact of hydro-sedimentary processes on SRP concentrations and fluxes is estimated under various hydrological conditions. Sorption interaction parameters between SRP and suspended matter are experimentally determined on river water samples and are included in a hydro-ecological model. Simulated concentrations are compared to weekly measurements at 11 monitoring stations. The introduction of sorption in the model reduces the root mean square error of simulated SRP concentrations by 20xa0% and allows the simulation of particulate inorganic P (PIP) accumulation in the system. With these ameliorations, the model constitutes a reliable management tool, which is compatible with the requirements of new regulations as the European Water Framework Directive. P mass balances are assessed upstream and downstream the major waste water treatment plant of the Paris urban area. P fluxes in the system are mainly driven by hydrological conditions and sediment-related processes. While SRP is the predominant P form during low flow, PIP accounts for more than 70xa0% of the total P during high flow. Moreover, SRP sorption fluxes are of the same order of magnitude as biotic fluxes affecting SRP concentrations. According to the model, and based on all the available data, 75xa0% of the SRP release by the river bed sediments occurs during high flow periods, and PIP exchanges at the sediment–water interface are more than 4 times higher during high flow periods than during low flow periods.


Environmental Science and Pollution Research | 2018

Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine River

Nicolas Escoffier; Nathaniel Bensoussan; Lauriane Vilmin; Nicolas Flipo; Rocher Vincent; A. David; François Métivier; Alexis Groleau

Large rivers are important components of the global C cycle. While they are facing an overall degradation of their water quality, little remains known about the dynamics of their metabolism. In the present study, we used continuous multi-sensors measurements to assess the temporal variability of gross primary production (GPP) and ecosystem respiration (ER) rates of the anthropized Seine River over an annual cycle. Downstream from the Paris urban area, the Seine River is net heterotrophic at the annual scale (−226xa0gO2u2009m−2xa0year−1 or −264xa0gCxa0m−2xa0year−1). Yet, it displays a net autotrophy at the daily and seasonal scales during phytoplankton blooms occurring from late winter to early summer. Multivariate analyses were performed to identify the drivers of river metabolism. Daily GPP is best predicted by chlorophyll a (Chla), water temperature (T), light, and rainfalls, and the coupling of daily GPP and Chla allows for the estimation of the productivity rates of the different phytoplankton communities. ER rates are mainly controlled by T and, to a lesser extent, by Chla. The increase of combined sewer overflows related to storm events during the second half of the year stimulates ER and the net heterotrophy of the river. River metabolism is, thus, controlled at different timescales by factors that are affected by human pressures. Continuous monitoring of river metabolism must, therefore, be pursued to deepen our understanding about the responses of ecosystem processes to changing human pressures and climate.


Water Resources Research | 2016

Simulating bioclogging effects on dynamic riverbed permeability and infiltration

Michelle Newcomer; Susan S. Hubbard; Jan H. Fleckenstein; Ulrich Maier; Christian Schmidt; Martin Thullner; Craig Ulrich; Nicolas Flipo; Yoram Rubin

Bioclogging in rivers can detrimentally impact aquifer recharge. This is particularly so in dry regions, where losing rivers are common, and where disconnection between surface water and groundwater (leading to the development of an unsaturated zone) can occur. Reduction in riverbed permeability due to biomass growth is a time-variable parameter that is often neglected, yet permeability reduction from bioclogging can introduce order of magnitude changes in seepage fluxes from rivers over short (i.e., monthly) timescales. To address the combined effects of bioclogging and disconnection on infiltration, we developed numerical representations of bioclogging processes within a one-dimensional, variably saturated flow model representing losing-connected and losing-disconnected rivers. We tested these formulations using a synthetic case study informed with biological data obtained from the Russian River, California, USA. Our findings show that modeled biomass growth reduced seepage for losing-connected and losing-disconnected rivers. However, for rivers undergoing disconnection, infiltration declines occurred only after the system was fully disconnected. Before full disconnection, biologically induced permeability declines were not significant enough to offset the infiltration gains introduced by disconnection. The two effects combine to lead to a characteristic infiltration curve where peak infiltration magnitude and timing is controlled by permeability declines relative to hydraulic gradient gains. Biomass growth was found to hasten the onset of full disconnection; a condition we term ‘effective disconnection’. Our results show that river infiltration can respond dynamically to bioclogging and subsequent permeability declines that are highly dependent on river connection status.


Water Resources Management | 2015

Reporting of Stream-Aquifer Flow Distribution at the Regional Scale with a Distributed Process-Based Model

A. Pryet; Baptiste Labarthe; Firas Saleh; M. Akopian; Nicolas Flipo

Groundwater withdrawals can reduce aquifer-to-stream flow and induce stream-to-aquifer flow. These effects involve potential threats over surface water and groundwater quantity and quality. As a result, the description of stream-aquifer flow in space and time is of high interest for water managers. In this study, the EauDyssée platform, an integrated groundwater/surface water model is extended to provide the distribution of stream-aquifer flow at the regional scale. The methodology is implemented over long periods (17 years) in the Seine river basin (76 375 km2, France) with a 6 481 km long simulated river network. The study scale is compatible with the scale of interest of water authorities, which is often larger than study scales of research projects. Net and gross stream-aquifer exchange flow are computed at the daily time step over the whole river network at a resolution of 1 km. Simulation results highlight that a major proportion of the main stream network (82 %) is supplied by groundwater. Groundwater withdrawals induce a reduction of net aquifer-to-stream flow (−19 %) at the basin scale and flow reversals in the vicinity of pumping locations. Such an integrated model provided at the appropriate regional scale is an essential tool provided to water managers for the implementation of the EU Water Framework Directive.


Environmental Science and Pollution Research | 2018

Estimation of the water quality of a large urbanized river as defined by the European WFD : what is the optimal sampling frequency?

Lauriane Vilmin; Nicolas Flipo; Nicolas Escoffier; Alexis Groleau

Assessment of the quality of freshwater bodies is essential to determine the impact of human activities on water resources. The water quality status is estimated by comparing indicators with standard thresholds. Indicators are usually statistical criteria that are calculated on discrete measurements of water quality variables. If the time step of the measured time series is not sufficient to fully capture the variable’s variability, the deduced indicator may not reflect the system’s functioning. The goal of the present work is to assess, through a hydro-biogeochemical modeling approach, the optimal sampling frequency for an accurate estimation of 6 water quality indicators defined by the European Water Framework Directive (WFD) in a large human-impacted river, which receives large urban effluents (the Seine River across the Paris urban area). The optimal frequency depends on the sampling location and on the monitored variable. For fast varying compounds that originate from urban effluents, such as PO43−


Global Biogeochemical Cycles | 2016

Carbon fate in a large temperate human‐impacted river system: Focus on benthic dynamics

Lauriane Vilmin; Nicolas Flipo; Nicolas Escoffier; Vincent Rocher; Alexis Groleau

_{4}^{3-}


Ground Water | 2017

Estimating River Conductance from Prior Information to Improve Surface-Subsurface Model Calibration

Yohann Cousquer; Alexandre Pryet; Nicolas Flipo; Célestine Delbart; Alain Dupuy

, NH4+

Collaboration


Dive into the Nicolas Flipo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amer Mouhri

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaëlle Tallec

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alexis Groleau

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludovic Bodet

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge