Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Goffart is active.

Publication


Featured researches published by Nicolas Goffart.


Cancers | 2013

Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

Nicolas Goffart; Jérôme Kroonen; Bernard Rogister

Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.


Neuro-oncology | 2015

Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling

Nicolas Goffart; Jérôme Kroonen; Emmanuel Di Valentin; Matthias Dedobbeleer; Alexandre Denne; Philippe Martinive; Bernard Rogister

BACKGROUND Patients with glioblastoma multiforme (GBM) have an overall median survival of 15 months. This catastrophic survival rate is the consequence of systematic relapses that could arise from remaining glioblastoma stem cells (GSCs) left behind after surgery. We previously demonstrated that GSCs are able to escape the tumor mass and specifically colonize the adult subventricular zones (SVZs) after transplantation. This specific localization, away from the initial injection site, therefore represents a high-quality model of a clinical obstacle to therapy and relapses because GSCs notably retain the ability to form secondary tumors. METHOD In this work, we questioned the role of the CXCL12/CXCR4 signaling in the GSC-specific invasion of the SVZs. RESULTS We demonstrated that both receptor and ligand are respectively expressed by different GBM cell populations and by the SVZ itself. In vitro migration bio-assays highlighted that human U87MG GSCs isolated from the SVZs (U87MG-SVZ) display stronger migratory abilities in response to recombinant CXCL12 and/or SVZ-conditioned medium (SVZ-CM) compared with cancer cells isolated from the tumor mass (U87MG-TM). Moreover, in vitro inhibition of the CXCR4 signaling significantly decreased the U87MG-SVZ cell migration in response to the SVZ-CM. Very interestingly, treating U87MG-xenografted mice with daily doses of AMD3100, a specific CXCR4 antagonist, prevented the specific invasion of the SVZ. Another in vivo experiment, using CXCR4-invalidated GBM cells, displayed similar results. CONCLUSION Taken together, these data demonstrate the significant role of the CXCL12/CXCR4 signaling in this original model of brain cancer invasion.


Stem Cells International | 2015

Glioblastoma Circulating Cells: Reality, Trap or Illusion?

Arnaud Lombard; Nicolas Goffart; Bernard Rogister

Metastases are the hallmark of cancer. This event is in direct relationship with the ability of cancer cells to leave the tumor mass and travel long distances within the bloodstream and/or lymphatic vessels. Glioblastoma multiforme (GBM), the most frequent primary brain neoplasm, is mainly characterized by a dismal prognosis. The usual fatal issue for GBM patients is a consequence of local recurrence that is observed most of the time without any distant metastases. However, it has recently been documented that GBM cells could be isolated from the bloodstream in several studies. This observation raises the question of the possible involvement of glioblastoma-circulating cells in GBM deadly recurrence by a “homing metastasis” process. Therefore, we think it is important to review the already known molecular mechanisms underlying circulating tumor cells (CTC) specific properties, emphasizing their epithelial to mesenchymal transition (EMT) abilities and their possible involvement in tumor initiation. The idea is here to review these mechanisms and speculate on how relevant they could be applied in the forthcoming battles against GBM.


Neuro-oncology | 2017

CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone

Nicolas Goffart; Arnaud Lombard; François Lallemand; Jérôme Kroonen; Jessica Nassen; Emmanuel Di Valentin; Sharon Berendsen; Matthias Dedobbeleer; Estelle Willems; Pierre Robe; Vincent Bours; Didier Martin; Philippe Martinive; Pierre Maquet; Bernard Rogister

Background. Patients with glioblastoma (GBM) have an overall median survival of 15 months despite multimodal therapy. These catastrophic survival rates are to be correlated to systematic relapses that might arise from remaining glioblastoma stem cells (GSCs) left behind after surgery. In this line, it has recently been demonstrated that GSCs are able to escape the tumor mass and preferentially colonize the adult subventricular zone (SVZ). At a distance from the initial tumor site, these GSCs might therefore represent a high-quality model of clinical resilience to therapy and cancer relapses as they specifically retain tumor-initiating abilities. Method. While relying on recent findings that have validated the existence of GSCs in the human SVZ, we questioned the role of the SVZ niche as a potential GSC reservoir involved in therapeutic failure. Results. Our results demonstrate that (i) GSCs located in the SVZ are specifically resistant to radiation in vivo, (ii) these cells display enhanced mesenchymal roots that are known to be associated with cancer radioresistance, (iii) these mesenchymal traits are specifically upregulated by CXCL12 (stromal cell-derived factor-1) both in vitro and in the SVZ environment, (iv) the amount of SVZ-released CXCL12 mediates GBM resistance to radiation in vitro, and (v) interferes with the CXCL12/CXCR4 signalling system, allowing weakening of the tumor mesenchymal roots and radiosensitizing SVZ-nested GBM cells. Conclusion. Together, these data provide evidence on how the adult SVZ environment, through the release of CXCL12, supports GBM therapeutic failure and potential tumor relapse.


Oncogene | 2016

HDAC7 inhibition resets STAT3 tumorigenic activity in human glioblastoma independently of EGFR and PTEN: new opportunities for selected targeted therapies

Paul Peixoto; Arnaud Blomme; Brunella Costanza; R Ronca; S Rezzola; Ana Palacios; Laurent Schoysman; Sébastien Boutry; Nicolas Goffart; Olivier Peulen; Pamela Maris; E Di Valentin; Vincent Hennequière; Elettra Bianchi; Aurélie Henry; P Meunier; Bernard Rogister; Robert N. Muller; Philippe Delvenne; Akeila Bellahcene; Vincenzo Castronovo; Andrei Turtoi

To date, the mutational status of EGFR and PTEN has been shown as relevant for favoring pro- or anti-tumor functions of STAT3 in human glioblastoma multiforme (GBM). We have screened genomic data from 154 patients and have identified a strong positive correlation between STAT3 and HDAC7 expression. In the current work we show the existence of a subpopulation of patients overexpressing HDAC7 and STAT3 that has particularly poor clinical outcome. Surprisingly, the somatic mutation rate of both STAT3 and HDAC7 was insignificant in GBM comparing with EGFR, PTEN or TP53. Depletion of HDAC7 in a range of GBM cells induced the expression of tyrosine kinase JAK1 and the tumor suppressor AKAP12. Both proteins synergistically sustained the activity of STAT3 by inducing its phosphorylation (JAK1) and protein expression (AKAP12). In absence of HDAC7, activated STAT3 was responsible for significant imbalance of secreted pro-/anti-angiogenic factors. This inhibited the migration and sprouting of endothelial cells in paracrine fashion in vitro as well as angiogenesis in vivo. In a murine model of GBM, induced HDAC7-silencing decreased the tumor burden by threefold. The current data show for the first time that silencing HDAC7 can reset the tumor suppressor activity of STAT3, independently of the EGFR/PTEN/TP53 background of the GBM. This effect could be exploited to overcome tumor heterogeneity and provide a new rationale behind the development of specific HDAC7 inhibitors for clinical use.


International Journal of Oncology | 2016

Constitutive activation of casein kinase 2 in glioblastomas: Absence of class restriction and broad therapeutic potential

Nadège Dubois; Marie Willems; Minh-Tuan Nguyen-Khac; Jérôme Kroonen; Nicolas Goffart; Manuel Deprez; Vincent Bours; Pierre Robe

Casein kinase II contributes to the growth and survival of malignant gliomas and attracts increasing attention as a therapeutic target in these tumors. Several reports have suggested that this strategy might be most relevant for specific subgroups of patients, namely Verhaaks classical and TP53 wild-type tumors. Using kinase assays and microarray genetic profiling in a series of 27 proprietary fresh frozen surgical glioma samples, we showed that constitutive CK2 kinase activation is not restricted to tumors that present increased copy numbers or mRNA expression of its catalytic or regulatory subunits, and can result from a functional activation by various cytokines from the glioma microenvironment. Using corresponding primary tumor and human astrocyte cell cultures as well as glioma cell lines, we confirmed that CK2 inhibition is selectively toxic to malignant glial tumors, without any restriction to tumor class or to TP53 status. We finally showed that while the contribution of CK2 to the constitutive NF-κB hyperactivation in malignant gliomas is at best moderate, a delayed activation of NF-κB may associate with the therapeutic resistance of glioma cells to CK2 inhibition.


Oncotarget | 2016

New role of osteopontin in DNA repair and impact on human glioblastoma radiosensitivity

Aurélie Henry; Marie-Julie Nokin; Natacha Leroi; François Lallemand; Jérémy Lambert; Nicolas Goffart; Patrick Roncarati; Elettra Bianchi; Paul Peixoto; Arnaud Blomme; Andrei Turtoi; Olivier Peulen; Yvette Habraken; Félix Scholtes; Philippe Martinive; Philippe Delvenne; Bernard Rogister; Vincenzo Castronovo; Akeila Bellahcene

Glioblastoma (GBM) represents the most aggressive and common solid human brain tumor. We have recently demonstrated the importance of osteopontin (OPN) in the acquisition/maintenance of stemness characters and tumorigenicity of glioma initiating cells. Consultation of publicly available TCGA database indicated that high OPN expression correlated with poor survival in GBM patients. In this study, we explored the role of OPN in GBM radioresistance using an OPN-depletion strategy in U87-MG, U87-MG vIII and U251-MG human GBM cell lines. Clonogenic experiments showed that OPN-depleted GBM cells were sensitized to irradiation. In comet assays, these cells displayed higher amounts of unrepaired DNA fragments post-irradiation when compared to control. We next evaluated the phosphorylation of key markers of DNA double-strand break repair pathway. Activating phosphorylation of H2AX, ATM and 53BP1 was significantly decreased in OPN-deficient cells. The addition of recombinant OPN prior to irradiation rescued phospho-H2AX foci formation thus establishing a new link between DNA repair and OPN expression in GBM cells. Finally, OPN knockdown improved mice survival and induced a significant reduction of heterotopic human GBM xenograft when combined with radiotherapy. This study reveals a new function of OPN in DNA damage repair process post-irradiation thus further confirming its major role in GBM aggressive disease.


Oncogene | 2018

Aurora A plays a dual role in migration and survival of human glioblastoma cells according to the CXCL12 concentration

Estelle Willems; Matthias Dedobbeleer; Marina Digregorio; Arnaud Lombard; Nicolas Goffart; Paul Noel Lumapat; Jérémy Lambert; Priscilla Van den Ackerveken; Martyna Szpakowska; Andy Chevigné; Félix Scholtes; Bernard Rogister

Primary glioblastoma is the most frequent human brain tumor in adults and is generally fatal due to tumor recurrence. We previously demonstrated that glioblastoma-initiating cells invade the subventricular zones and promote their radio-resistance in response to the local release of the CXCL12 chemokine. In this work, we show that the mitotic Aurora A kinase (AurA) is activated through the CXCL12–CXCR4 pathway in an ERK1/2-dependent manner. Moreover, the CXCL12–ERK1/2 signaling induces the expression of Ajuba, the main cofactor of AurA, which allows the auto-phosphorylation of AurA.We show that AurA contributes to glioblastoma cell survival, radio-resistance, self-renewal, and proliferation regardless of the exogenous stimulation with CXCL12. On the other hand, AurA triggers the CXCL12-mediated migration of glioblastoma cells in vitro as well as the invasion of the subventricular zone in xenograft experiments. Moreover, AurA regulates cytoskeletal proteins (i.e., Actin and Vimentin) and favors the pro-migratory activity of the Rho-GTPase CDC42 in response to CXCL12. Altogether, these results show that AurA, a well-known kinase of the mitotic machinery, may play alternative roles in human glioblastoma according to the CXCL12 concentration.


Targeted Oncology | 2017

The Unexpected Roles of Aurora A Kinase in Gliobastoma Recurrences

Estelle Willems; Arnaud Lombard; Matthias Dedobbeleer; Nicolas Goffart; Bernard Rogister


Future Neurology | 2014

Glioblastoma stem cells: new insights in therapeutic strategies

Nicolas Goffart; Matthias Dedobbeleer; Bernard Rogister

Collaboration


Dive into the Nicolas Goffart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge