Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Guex is active.

Publication


Featured researches published by Nicolas Guex.


Electrophoresis | 2009

Automated comparative protein structure modeling with Swiss-model and Swiss-PdbViewer : a historical perspective

Nicolas Guex; Manuel C. Peitsch; Torsten Schwede

SWISS‐MODEL pioneered the field of automated modeling as the first protein modeling service on the Internet. In combination with the visualization tool Swiss‐PdbViewer, the Internet‐based Workspace and the SWISS‐MODEL Repository, it provides a fully integrated sequence to structure analysis and modeling platform. This computational environment is made freely available to the scientific community with the aim to hide the computational complexity of structural bioinformatics and encourage bench scientists to make use of the ever‐increasing structural information available. Indeed, over the last decade, the availability of structural information has significantly increased for many organisms as a direct consequence of the complementary nature of comparative protein modeling and experimental structure determination. This has a very positive and enabling impact on many different applications in biomedical research as described in this paper.


PLOS Biology | 2008

High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states

Kevin A. Wilkinson; Robert J. Gorelick; Suzy M. Vasa; Nicolas Guex; Alan Rein; David H. Mathews; Morgan C. Giddings; Kevin M. Weeks

Replication and pathogenesis of the human immunodeficiency virus (HIV) is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001) SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further application of this technology will make possible newly informative analysis of any RNA in a cellular transcriptome.


American Journal of Human Genetics | 1998

Loss of LKB1 Kinase Activity in Peutz-Jeghers Syndrome, and Evidence for Allelic and Locus Heterogeneity

Hamid Mehenni; Corinne Gehrig; Jun-ichi Nezu; Asuka Oku; Miyuki Shimane; Colette Rossier; Nicolas Guex; Jean-Louis Blouin; Hamish S. Scott

Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. There is an increased risk of benign and malignant tumors in the gastrointestinal tract and in extraintestinal tissues. One PJS locus has been mapped to chromosome 19p13.3; a second locus is suspected on chromosome 19q13.4 in a minority of families. The PJS gene on 19p13.3 has recently been cloned, and it encodes the serine/threonine kinase LKB1. The gene, which is ubiquitously expressed, is composed of 10 exons spanning 23 kb. Several LKB1 mutations have been reported in heterozygosity in PJS patients. In this study, we screened for LKB1 mutations in nine PJS families of American, Spanish, Portuguese, French, Turkish, and Indian origin and detected seven novel mutations. These included two frameshift mutations, one four-amino-acid deletion, two amino-acid substitutions, and two splicing errors. Expression of mutant LKB1 proteins (K78I, D176N, W308C, and L67P) and assessment of their autophosphorylation activity revealed a loss of the kinase activity in all of these mutants. These results provide direct evidence that the elimination of the kinase activity of LKB1 is probably responsible for the development of the PJS phenotypes. In two Indian families, we failed to detect any LKB1 mutation; in one of these families, we previously had detected linkage to markers on 19q13.3-4, which suggests locus heterogeneity of PJS. The elucidation of the molecular etiology of PJS and the positional cloning of the second potential PJS gene will further elucidate the involvement of kinases/phosphatases in the development of cancer-predisposing syndromes.


Research in Microbiology | 2000

Protein structure computing in the genomic era.

Torsten Schwede; Alexander Diemand; Nicolas Guex; Manuel C. Peitsch

Functional analysis of the proteins discovered in fully sequenced genomes represents the next major challenge of life science research. Computational methods play a crucial role in this activity and, among them, comparative protein modelling is of great assistance during the rational design of mutagenesis experiments. Our aim over the last several years has been to further the use of 3-D model structures in this field. Therefore, we have developed a comparative protein modelling environment composed of the Swiss-PdbViewer (sequence to structure workbench and viewing program), SWISS-MODEL (internet-based server for model generation) and a database of a model generated with 3DCrunch.


PLOS Biology | 2012

Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

Gwendal Le Martelot; Donatella Canella; Laura Symul; Eugenia Migliavacca; Federica Gilardi; Robin Liechti; Olivier Martin; Keith Harshman; Mauro Delorenzi; Béatrice Desvergne; Winship Herr; Bart Deplancke; Ueli Schibler; Jacques Rougemont; Nicolas Guex; Nouria Hernandez; Felix Naef

Genome-wide rhythms in RNA polymerase II loading and dynamic chromatin remodeling underlie periodic gene expression during diurnal cycles in the mouse liver.


BMC Bioinformatics | 2012

Defining and searching for structural motifs using DeepView/Swiss-PdbViewer.

Maria U Johansson; Vincent Zoete; Olivier Michielin; Nicolas Guex

BackgroundToday, recognition and classification of sequence motifs and protein folds is a mature field, thanks to the availability of numerous comprehensive and easy to use software packages and web-based services. Recognition of structural motifs, by comparison, is less well developed and much less frequently used, possibly due to a lack of easily accessible and easy to use software.ResultsIn this paper, we describe an extension of DeepView/Swiss-PdbViewer through which structural motifs may be defined and searched for in large protein structure databases, and we show that common structural motifs involved in stabilizing protein folds are present in evolutionarily and structurally unrelated proteins, also in deeply buried locations which are not obviously related to protein function.ConclusionsThe possibility to define custom motifs and search for their occurrence in other proteins permits the identification of recurrent arrangements of residues that could have structural implications. The possibility to do so without having to maintain a complex software/hardware installation on site brings this technology to experts and non-experts alike.


Molecular Biology and Evolution | 2009

Evolutionary Trajectories of Primate Genes Involved in HIV Pathogenesis

Millán Ortiz; Nicolas Guex; Etienne Patin; Olivier Martin; Ioannis Xenarios; Angela Ciuffi; Lluis Quintana-Murci; Amalio Telenti

The current availability of five complete genomes of different primate species allows the analysis of genetic divergence over the last 40 million years of evolution. We hypothesized that the interspecies differences observed in susceptibility to HIV-1 would be influenced by the long-range selective pressures on host genes associated with HIV-1 pathogenesis. We established a list of human genes (n = 140) proposed to be involved in HIV-1 biology and pathogenesis and a control set of 100 random genes. We retrieved the orthologous genes from the genome of humans and of four nonhuman primates (Pan troglodytes, Pongo pygmaeus abeli, Macaca mulatta, and Callithrix jacchus) and analyzed the nucleotide substitution patterns of this data set using codon-based maximum likelihood procedures. In addition, we evaluated whether the candidate genes have been targets of recent positive selection in humans by analyzing HapMap Phase 2 single-nucleotide polymorphisms genotyped in a region centered on each candidate gene. A total of 1,064 sequences were used for the analyses. Similar median K(A)/K(S) values were estimated for the set of genes involved in HIV-1 pathogenesis and for control genes, 0.19 and 0.15, respectively. However, genes of the innate immunity had median values of 0.37 (P value = 0.0001, compared with control genes), and genes of intrinsic cellular defense had K(A)/K(S) values around or greater than 1.0 (P value = 0.0002). Detailed assessment allowed the identification of residues under positive selection in 13 proteins: AKT1, APOBEC3G, APOBEC3H, CD4, DEFB1, GML, IL4, IL8RA, L-SIGN/CLEC4M, PTPRC/CD45, Tetherin/BST2, TLR7, and TRIM5alpha. A number of those residues are relevant for HIV-1 biology. The set of 140 genes involved in HIV-1 pathogenesis did not show a significant enrichment in signals of recent positive selection in humans (intraspecies selection). However, we identified within or near these genes 24 polymorphisms showing strong signatures of recent positive selection. Interestingly, the DEFB1 gene presented signatures of both interspecies positive selection in primates and intraspecies recent positive selection in humans. The systematic assessment of long-acting selective pressures on primate genomes is a useful tool to extend our understanding of genetic variation influencing contemporary susceptibility to HIV-1.


Planta | 2008

Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis

Karolina M. Pajerowska-Mukhtar; M. Shahid Mukhtar; Nicolas Guex; Vincentius A. Halim; Sabine Rosahl; Imre E. Somssich; Christiane Gebhardt

Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.


Molecular Ecology | 2014

Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps

Loïc Pellissier; Hélène Niculita-Hirzel; Anne Dubuis; Marco Pagni; Nicolas Guex; Charlotte Ndiribe; Nicolas Salamin; Ioannis Xenarios; Jérôme Goudet; Ian R. Sanders; Antoine Guisan

Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below‐ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km2). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity–area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine‐scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage‐specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.


Genome Research | 2012

A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver

Donatella Canella; David Bernasconi; Federica Gilardi; Gwendal LeMartelot; Eugenia Migliavacca; Viviane Praz; Pascal Cousin; Mauro Delorenzi; Nouria Hernandez; Bart Deplancke; Béatrice Desvergne; Nicolas Guex; Winship Herr; Felix Naef; Jacques Rougemont; Ueli Schibler; Teemu Andersin; Pascal Gos; Gwendal Le Martelot; Fabienne Lammers; Sunil K. Raghav; Roberto Fabbretti; Arnaud Fortier; Li Long; Volker Vlegel; Ioannis Xenarios; Fabrice David; Yohan Jarosz; Dmitry Kuznetsov; Robin Liechti

The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes.

Collaboration


Dive into the Nicolas Guex's collaboration.

Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Manuel C. Peitsch

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Torsten Schwede

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin Liechti

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge