Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Hohmann is active.

Publication


Featured researches published by Nicolas Hohmann.


Journal of Hepatology | 2016

First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B

Antje Blank; Christoph Markert; Nicolas Hohmann; Alexandra Carls; Gerd Mikus; Thorsten Lehr; A. Alexandrov; Mathias Haag; Matthias Schwab; Stephan Urban; Walter E. Haefeli

BACKGROUND & AIMS Myrcludex B is a first-in-class compound, which blocks entry of hepatitis B and D virus into hepatocytes in vitro and in animal models. Based on the required preclinical data we aimed to translate this compound into the first application in humans. METHODS Single ascending doses of myrcludex B, a 47 amino acid peptide, were administered up to 20mg intravenously and 10mg subcutaneously in a prospective open first-in-human, phase I clinical trial to 36 healthy volunteers. Safety, tolerability and plasma concentrations of myrcludex B were assessed and a pharmacokinetic model was derived. RESULTS Myrcludex B was well tolerated and no serious or relevant AEs representing off-target effects, and no immunogenic effects were observed up to the highest applied dose of 20mg (intravenously). Myrcludex B showed dose-dependent pharmacokinetics, best described by a 2-compartment target-mediated drug disposition model. Bioavailability of the subcutaneous application was large (85%). Interindividual variability was moderate. The pharmacokinetic model suggested that subcutaneous doses of 10mg and above reach a target saturation of over 80% for at least 15h. CONCLUSIONS Myrcludex B showed excellent tolerability up to high doses. Pharmacologic properties followed a 2-compartment target-mediated drug disposition model. These findings are vital for planning of further multiple dose efficacy trials in patients. LAY SUMMARY After showing antiviral activity in cell culture and animal models, myrcludex B, a new drug intended for the treatment of hepatitis B and D, has been administered the first time in humans. Healthy volunteers received the drug intravenously and subcutaneously up to high doses (20mg). The drug was well tolerated and the characteristics of the drug determining its way in the human body could be described. These results will allow testing myrcludex B in hepatitis B and D patients.


Clinical Pharmacology & Therapeutics | 2013

A Nanogram Dose of the CYP3A Probe Substrate Midazolam to Evaluate Drug Interactions

B Halama; Nicolas Hohmann; Jürgen Burhenne; Johanna Weiss; Gerd Mikus; Walter E. Haefeli

The objective of the study was to establish an in vivo method for assessing cytochrome P450 3A (CYP3A) activity using therapeutically inert nanogram doses of midazolam. We administered four escalating single doses of oral midazolam (0.0001–3 mg) to 12 healthy participants, stratified according to CYP3A5 carrier status, to assess pharmacokinetics linearity. We then evaluated the interactions with the CYP3A inhibitor ketoconazole (400 mg q.d.) after nanogram and regular doses of midazolam. Area under the plasma concentration–time curve (AUC) and peak plasma concentration (Cmax) were linear over the entire range of doses. Ketoconazole reduced midazolam oral clearance by 92.8%. AUC and Cmax increased by 1,540 and 363%, respectively. CYP3A5 carrier status had no influence on midazolam oral clearance or its inhibition by ketoconazole. This is the first study showing that midazolam pharmacokinetics is linear in a 30,000–fold concentration range, and therefore that nano– and microgram doses of midazolam can reliably predict the pharmacokinetics of midazolam in therapeutic doses and can be used to assess CYP3A activity even in the presence of strong CYP3A inhibitors.


BMC Cancer | 2012

Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-Receptor 2 in patients with stage IV and locally advanced pancreatic cancer

Andreas G. Niethammer; Heinz Lubenau; Gerd Mikus; Philipp Knebel; Nicolas Hohmann; Christine Leowardi; Mustafa Akhisaroglu; Yingzi Ge; Marco Springer; Lars Grenacher; Markus W. Büchler; Moritz Koch; Jürgen Weitz; Walter E. Haefeli; Friedrich Hubertus Schmitz-Winnenthal

BackgroundThe investigational oral DNA vaccine VXM01 targets the vascular endothelial growth factor receptor 2 (VEGFR-2) and uses Salmonella typhi Ty21a as a vector. The immune reaction elicited by VXM01 is expected to disrupt the tumor neovasculature and, consequently, inhibit tumor growth. VXM01 potentially combines the advantages of anti-angiogenic therapy and active immunotherapy.Methods/DesignThis phase I trial examines the safety, tolerability, and immunological and clinical responses to VXM01. The randomized, placebo-controlled, double blind dose-escalation study includes up to 45 patients with locally advanced and stage IV pancreatic cancer. The patients will receive four doses of VXM01 or placebo in addition to gemcitabine as standard of care. Doses from 106 cfu up to 1010 cfu of VXM01 will be evaluated in the study. An independent data safety monitoring board (DSMB) will be involved in the dose-escalation decisions. In addition to safety as primary endpoint, the VXM01-specific immune reaction, as well as clinical response parameters will be evaluated.DiscussionThe results of this study shall provide the first data regarding the safety and immunogenicity of the oral anti-VEGFR-2 vaccine VXM01 in cancer patients. They will also define the recommended dose for phase II and provide the basis for further clinical evaluation, which may also include additional cancer indications.Trial registrationEudraCT No.: 2011-000222-29, NCT01486329, ISRCTN68809279


British Journal of Clinical Pharmacology | 2015

Midazolam microdose to determine systemic and pre‐systemic metabolic CYP3A activity in humans

Nicolas Hohmann; Franziska Kocheise; Alexandra Carls; Jürgen Burhenne; Walter E. Haefeli; Gerd Mikus

AIM We aimed to establish a method to assess systemic and pre-systemic cytochrome P450 (CYP) 3A activity using ineffective microgram doses of midazolam. METHODS In an open, one sequence, crossover study, 16 healthy participants received intravenous and oral midazolam at microgram (0.001 mg intravenous and 0.003 mg oral) and regular milligram (1 mg intravenous and 3 mg oral) doses to assess the linearity of plasma and urine pharmacokinetics. RESULTS Dose-normalized AUC and Cmax were 37.1 ng ml(-1 ) h [95% CI 35.5, 40.6] and 39.1 ng ml(-1) [95% CI 30.4, 50.2] for the microdose and 39.0 ng ml(-1 ) h [95% CI 36.1, 42.1] and 37.1 ng ml(-1) [95% CI 26.9, 51.3] for the milligram dose. CLmet was 253 ml min(-1) [95% CI 201, 318] vs. 278 ml min(-1) [95% CI 248, 311] for intravenous doses and 1880 ml min(-1) [95% CI 1590, 2230] vs. 2050 ml min(-1) [95% CI 1720, 2450] for oral doses. Oral bioavailability of a midazolam microdose was 23.4% [95% CI 20.0, 27.3] vs. 20.9% [95% CI 17.1, 25.5] after the regular dose. Hepatic and gut extraction ratios for microgram doses were 0.44 [95% CI 0.39, 0.49] and 0.53 [95% CI 0.45, 0.63] and compared well with those for milligram doses (0.43 [95% CI 0.37, 0.49] and 0.61 [95% CI 0.53, 0.70]). CONCLUSION The pharmacokinetics of an intravenous midazolam microdose is linear to the applied regular doses and can be used to assess safely systemic CYP3A activity and, in combination with oral microdoses, pre-systemic CYP3A activity.


OncoImmunology | 2015

Anti-angiogenic activity of VXM01, an oral T-cell vaccine against VEGF receptor 2, in patients with advanced pancreatic cancer: A randomized, placebo-controlled, phase 1 trial.

Friedrich Hubertus Schmitz-Winnenthal; Nicolas Hohmann; Andreas G. Niethammer; Tobias Friedrich; Heinz Lubenau; Marco Springer; Klaus M. Breiner; Gerd Mikus; Jürgen Weitz; Alexis Ulrich; Markus W. Buechler; Frank Pianka; Ulla Klaiber; Markus K. Diener; Christine Leowardi; Simon Schimmack; Leila Sisic; Anne-Valerie Keller; Ruhan Koc; Christoph Springfeld; Philipp Knebel; Thomas Schmidt; Yingzi Ge; Mariana Bucur; Slava Stamova; Lilli Podola; Walter E. Haefeli; Lars Grenacher

VEGFR-2 is expressed on tumor vasculature and a target for anti-angiogenic intervention. VXM01 is a first in kind orally applied tumor vaccine based on live, attenuated Salmonella bacteria carrying an expression plasmid, encoding VEGFR-2. We here studied the safety, tolerability, T effector (Teff), T regulatory (Treg) and humoral responses to VEGFR2 and anti-angiogenic effects in advanced pancreatic cancer patients in a randomized, dose escalation phase I clinical trial. Results of the first 3 mo observation period are reported. Locally advanced or metastatic, pancreatic cancer patients were enrolled. In five escalating dose groups, 30 patients received VXM01 and 15 placebo on days 1, 3, 5, and 7. Treatment was well tolerated at all dose levels. No dose-limiting toxicities were observed. Salmonella excretion and salmonella-specific humoral immune responses occurred in the two highest dose groups. VEGFR2 specific Teff, but not Treg responses were overall increased in vaccinated patients. We furthermore observed a significant reduction of tumor perfusion after 38 d in vaccinated patients together with increased levels of serum biomarkers indicative of anti-angiogenic activity, VEGF-A, and collagen IV. Vaccine specific Teff responses significantly correlated with reductions of tumor perfusion and high levels of preexisting VEGFR2-specific Teff while those showing no antiangiogenic activity had low levels of preexisting VEGFR2 specific Teff, showed a transient early increase of VEGFR2-specific Treg and reduced levels of VEGFR2-specific Teff at later time points – pointing to the possibility that early anti-angiogenic activity might be based at least in part on specific reactivation of preexisting memory T cells.


European Journal of Pharmaceutical Sciences | 2017

Clementine juice has the potential for drug interactions – In vitro comparison with grapefruit and mandarin juice

Dirk Theile; Nicolas Hohmann; Dominik Kiemel; Giuseppe Gattuso; Davide Barreca; Gerd Mikus; Walter E. Haefeli; Vedat Schwenger; Johanna Weiss

&NA; Adverse drug interactions due to grapefruit juice are well known prompting warnings even in drug labels. Similar issues have not been reported for clementines and available data is scarce, despite of genetic descent. We observed substantially increased tacrolimus trough concentrations in a renal transplant patient consuming high clementine amounts and, thus, scrutinised the effects of clementine juice on drug metabolism and drug transporters in vitro and compared it to the effects of mandarin and grapefruit juice. All citrus juices profoundly induced several drug transporters and drug metabolising enzymes, whereas the effects of grapefruit juice were most pronounced (e.g. 156‐fold and 34‐fold induction of cytochrome P450 (CYP) 3A4 mRNA by grapefruit juice and clementine juice, respectively). However, the juices also inhibited e.g. CYP3A4, raising the question which effect prevails in vivo. Using an enzymatic activity assay, we demonstrated that at least in vitro CYP3A4 inhibition prevails for both grapefruit and clementine juice, whereas for CYP1A2 induction appears to predominate. Thus, inhibition of CYP3A4 is presumably the underlying reason for the observed increase in the concentrations of the CYP3A4 substrate tacrolimus in the patient. Taken together, our data indicate that clementine juice as well as grapefruit juice and to a lesser extent also mandarin juice can induce several important drug metabolising enzymes and drug transporters, but also inhibit some of these proteins. Our data indicate that clementine juice similar to grapefruit juice bears the potential for profound interactions with drugs potentially leading to adverse drug effects e.g. through over‐exposure to CYP3A4 substrates. Graphical abstract Figure. No caption available.


Clinical Pharmacology & Therapeutics | 2018

The NTCP‐inhibitor Myrcludex B: Effects on Bile Acid Disposition and Tenofovir Pharmacokinetics

Antje Blank; A Eidam; M Haag; Nicolas Hohmann; Jürgen Burhenne; Michael Schwab; Sfj van de Graaf; Meyer; Hans H. Maurer; K Meier; Johanna Weiss; Thomas Bruckner; A Alexandrov; Stephan Urban; Gerd Mikus; Walter E. Haefeli

Myrcludex B acts as a hepatitis B and D virus entry inhibitor blocking the sodium taurocholate cotransporting polypeptide (SLC10A1). We investigated the effects of myrcludex B on plasma bile acid disposition, tenofovir pharmacokinetics, and perpetrator characteristics on cytochrome P450 (CYP) 3A. Twelve healthy volunteers received 300 mg tenofovir disoproxil fumarate orally and 10 mg subcutaneous myrcludex B. Myrcludex B increased total plasma bile acid exposure 19.2‐fold without signs of cholestasis. The rise in conjugated bile acids was up to 124‐fold (taurocholic acid). Coadministration of tenofovir with myrcludex B revealed no relevant changes in tenofovir pharmacokinetics. CYP3A activity slightly but significantly decreased by 29% during combination therapy. Myrcludex B caused an asymptomatic but distinct rise in plasma bile acid concentrations and had no relevant impact on tenofovir pharmacokinetics. Changes in CYP3A activity might be due to alterations in bile acid signaling. Long‐term effects of elevated bile acids will require critical evaluation.


Molecules | 2016

Estrogen Receptor Signaling and the PI3K/Akt Pathway Are Involved in Betulinic Acid-Induced eNOS Activation

Nicolas Hohmann; Ning Xia; Katja Steinkamp-Fenske; Ulrich Förstermann; Huige Li

Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid with anti-inflammatory, antiviral and anti-cancer properties. Beneficial cardiovascular effects such as increased nitric oxide (NO) production through enhancement of endothelial NO synthase (eNOS) activity and upregulation of eNOS expression have been demonstrated for this compound. In the present study, immortalized human EA.hy 926 endothelial cells were incubated for up to 1 h with 1–100 µM BA and with the phosphatidylinositol-3-kinase (PI3K) inhibitors LY294002 and wortmannin, or the estrogen receptor (ER) antagonist ICI 182,780. Phosphorylation status of eNOS and total eNOS protein were analyzed by Western blotting using a serine 1177 phosphosite-specific antibody. Bioactive NO production was assessed by determination of cGMP content in rat lung fibroblasts (RFL-6) reporter cells. Short-term incubation of EA.hy 926 cells with BA resulted in eNOS phosphorylation at the serine 1177 residue in a concentration- and time-dependent manner with a half-maximal effective concentration of 0.57 µM. This was associated with an enhanced production of NO. BA-induced eNOS phosphorylation and NO production was completely blocked by pretreatment with ICI 182,780, and was attenuated by pretreatment with the PI3K inhibitors wortmannin and LY294002. These results indicate that fast non-genomic effects of ER with downstream signaling through the PI3K/Akt pathway and consecutive eNOS phosphorylation at serine 1177 are involved in BA-induced eNOS activation.


Expert Opinion on Drug Metabolism & Toxicology | 2016

CYP3A activity: towards dose adaptation to the individual.

Nicolas Hohmann; Walter E. Haefeli; Gerd Mikus

ABSTRACT Introduction: Co-medication, gene polymorphisms and co-morbidity are main causes for high variability in expression and function of the CYP3A isoenzymes. Pharmacokinetic variability is a major source of interindividual variability of drug effect and response of CYP3A substrates. While CYP3A genotyping is of limited use, direct testing of enzyme function (‘phenotyping’) may be more promising to achieve individualized dosing of CYP3A substrates. Areas covered: We will discuss available phenotyping strategies for CYP3A isoenzymes and causes of intra- and interindividual variability of CYP3A. The impact of phenotyping on the dose selection and pharmacokinetics of CYP3A substrates (docetaxel, irinotecan, tyrosine kinase inhibitors, ciclosporin, tacrolimus) are reviewed. Pubmed searches were conducted during March–November 2015 to retrieve articles related to CYP3A enzyme, phenotyping, drug interactions with CYP3A probe substrates, and phenotyping-guided dosing algorithms. Expert opinion: While ample data is available on the choice appropriate phenotyping drugs (midazolam, alfentanil, aplrazolam, buspirone, triazolam), less clinical trial data is available concerning strategies to usefully guide dosing in the clinical practice. Implementation into the clinical routine necessitates further research to identify (1) an easy-to-use and cheap test for CYP3A activity that (2) adequately predicts drug exposure to (3) allow a sound decision on dose adaptation and hence (4) improve clinical outcome and/or reduce the intensity or frequency of adverse drug effects.


Clinical Pharmacokinectics | 2015

Use of Microdose Phenotyping to Individualise Dosing of Patients

Nicolas Hohmann; Walter E. Haefeli; Gerd Mikus

Administering the right amount of the right drug at the right time is a key mission of clinical medicine. This comprises dose adaptation according to a patient’s intrinsic and extrinsic factors influencing drug disposition. Several biomarkers are available for dose adaptation; still, prediction of individual drug disposition may be improved. Phenotyping is the quantification of drug metabolism with probe substrates specific to drug-metabolising enzymes. This allows measurement of baseline metabolism and changes after modulation of drug metabolism. This article explores the concept of phenotyping using pharmacologically ineffective microdoses of probe substrates to obtain information on drug metabolism. Several probe drugs such as midazolam for cytochrome P450 3A have already been used, but validation of other microdosed probe drugs, analytical procedures and drug formulations still face some challenges that have to be overcome. Since microdosed probe drugs have no risk of adverse drug reactions or interference with therapy, more widespread use is possible. This allows drug–drug interaction data to be safely obtained during first-in-man studies, enhancing the clinical safety of human healthy volunteers and patients in clinical trials, and, most importantly, allows determination of the drug-metabolising phenotype in severely ill patients. With harmless probe drugs at hand quantifying drug metabolism and adapting the dose accordingly, a phenotyping-based dosing strategy could become reality, offering the possibility of individualised drug therapy with reduced adverse effects and fewer therapeutic failures.

Collaboration


Dive into the Nicolas Hohmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Grenacher

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge