Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas J. Alvarez is active.

Publication


Featured researches published by Nicolas J. Alvarez.


Langmuir | 2012

Interfacial dynamics and rheology of polymer-grafted nanoparticles at air-water and xylene-water interfaces.

Nicolas J. Alvarez; Shelley L. Anna; Trishna Saigal; Robert D. Tilton; Lynn M. Walker

Particle-stabilized emulsions and foams offer a number of advantages over traditional surfactant-stabilized systems, most notably a greater stability against coalescence and coarsening. Nanoparticles are often less effective than micrometer-scale colloidal particles as stabilizers, but nanoparticles grafted with polymers can be particularly effective emulsifiers, stabilizing emulsions for long times at very low concentrations. In this work, we characterize the long-time and dynamic interfacial tension reduction by polymer-grafted nanoparticles adsorbing from suspension and the corresponding dilatational moduli for both xylene-water and air-water interfaces. The dilatational moduli at both types of interfaces are measured by a forced sinusoidal oscillation of the interface. Surface tension measurements at the air-water interface are interpreted with the aid of independent ellipsometry measurements of surface excess concentrations. The results suggest that the ability of polymer-grafted nanoparticles to produce significant surface and interfacial tension reductions and dilatational moduli at very low surface coverage is a key factor underlying their ability to stabilize Pickering emulsions at extremely low concentrations.


Journal of Colloid and Interface Science | 2009

A non-gradient based algorithm for the determination of surface tension from a pendant drop: Application to low Bond number drop shapes

Nicolas J. Alvarez; Lynn M. Walker; Shelley L. Anna

The pendant drop method is one of the most widely used techniques to measure the surface tension between gas-liquid and liquid-liquid interfaces. The method consists of fitting the Young-Laplace equation to the digitized shape of a drop suspended from the end of a capillary tube. The first use of digital computers to solve this problem utilized nonlinear least squares fitting and since then numerous subroutines and algorithms have been reported for improving efficiency and accuracy. However, current algorithms which rely on gradient based methods have difficulty converging for almost spherical drop shapes (i.e. low Bond numbers). We present a non-gradient based algorithm based on the Nelder-Mead simplex method to solve the least squares problem. The main advantage of using a non-gradient based fitting routine is that it is robust against poor initial guesses and works for almost spherical bubble shapes. We have tested the algorithm against theoretical and experimental drop shapes to demonstrate both the efficiency and the accuracy of the fitting routine for a wide range of Bond numbers. Our study shows that this algorithm allows for surface tension measurements corresponding to Bond numbers previously shown to be ill suited for pendant drop measurements.


Journal of Colloid and Interface Science | 2012

Using bulk convection in a microtensiometer to approach kinetic-limited surfactant dynamics at fluid-fluid interfaces.

Nicolas J. Alvarez; Douglas Vogus; Lynn M. Walker; Shelley L. Anna

The impact of transport of surfactants to fluid-fluid interfaces is complex to assess and model, as many processes are in the regime where kinetics, diffusion and convection are comparable. Using the principle that the timescale for diffusion decreases with increasing curvature, we previously developed a microtensiometer to accurately measure fundamental transport coefficients via dynamic surface tension at spherical microscale liquid-fluid interfaces. In the present study, we use a low Reynolds number flow in the bulk solution to further increase the rate of diffusion. Dynamic surface tension is measured as a function of Peclet number and the results are compared with a simplified convection-diffusion model. Although a transition from diffusion to kinetic-limited transport is not observed experimentally for the surfactants considered, lower bounds on the adsorption and desorption rate constants are determined that are much larger than previously reported rate constants. The results show that the details of the flow field do not need to be controlled as long as the local Reynolds number is low. Aside from other pragmatic advantages, this experimental tool and analysis allows the governing mechanisms of surfactant transport at liquid-fluid interfaces to be quantified using flow near the interface to decrease the length scale for diffusion, separating the relevant timescales.


Physical Review Letters | 2016

Multiple Cracks Propagate Simultaneously in Polymer Liquids in Tension.

Qian Huang; Nicolas J. Alvarez; Aamir Shabbir; Ole Hassager

Understanding the mechanism of fracture is essential for material and process design. While the initiation of fracture in brittle solids is generally associated with the preexistence of material imperfections, the mechanism for initiation of fracture in viscoelastic fluids, e.g., polymer melts and solutions, remains an open question. We use high speed imaging to visualize crack propagation in entangled polymer liquid filaments under tension. The images reveal the simultaneous propagation of multiple cracks. The critical stress and strain for the onset of crack propagation are found to be highly reproducible functions of the stretch rate, while the position of initiation is completely random. The reproducibility of conditions for fracture points to a mechanism for crack initiation that depends on the dynamic state of the material alone, while the crack profiles reveal the mechanism of energy dissipation during crack propagation.


Journal of Colloid and Interface Science | 2011

The effect of alkane tail length of CiE8 surfactants on transport to the silicone oil-water interface.

Nicolas J. Alvarez; Wingki Lee; Lynn M. Walker; Shelley L. Anna

Detailed surfactant transport studies have typically been restricted to the air-water interface. This is mainly due to the lack of experimental devices and techniques available to study liquid-liquid interfaces. As a result, there is a lack of relevant data and understanding of surfactant behavior in microfluidic studies and emulsion applications. Using a novel shape fitting algorithm for a pendant drop capable of handling fluids of similar densities, i.e. low Bond numbers, we measure the dynamic surface tension as a function of bulk surfactant concentration at the silicone oil-water interface for a homologous series of C(i)E(8) nonionic surfactants. We show that the isotherms governing equilibrium at the oil-water and air-water interfaces are very different. Using a scaling analysis comparing two governing mass transport timescales, we demonstrate that there exists a transition from diffusion-limited to kinetic-limited dynamics at the silicone oil-water interface. Adsorption rate constants are determined from a one parameter nonlinear fit to dynamic surface tension data. These results demonstrate that the dynamics of interfacial transport are highly dependent on the immiscible fluids that form the interface.


Rheologica Acta | 2016

A new look at extensional rheology of low-density polyethylene

Qian Huang; Marc Mangnus; Nicolas J. Alvarez; Rudy Koopmans; Ole Hassager

The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a commercial filament stretching rheometer (VADER-1000). We show that the measurements from the EVF are limited by a maximum Hencky strain of 4, while the two filament stretching rheometers are able to probe the nonlinear behavior at larger Hencky strain values where the steady state is reached. With the capability of the filament stretching rheometers, we show that LDPEs with quite different linear viscoelastic properties can have very similar steady extensional viscosity. This points to the potential for independently controlling shear and extensional rheology in certain rate ranges.


Soft Matter | 2012

A criterion to assess the impact of confined volumes on surfactant transport to liquid–fluid interfaces

Nicolas J. Alvarez; Lynn M. Walker; Shelley L. Anna

When dissolved surfactant adsorbs at an interface, the bulk concentration decreases. If the initial concentration is low or the interfacial area large, the concentration decrease can be significant, and the solution depleted. Although depletion is not a new phenomenon, properly accounting for it requires a global mass conservation constraint in addition to a mass transport model. The emergence of new applications involving adsorption in finite volumes and with large surface areas, including micro- and nanoscale droplet formation, has introduced new scenarios in which depletion can be significant but complex to analyze. The purpose of this paper is to develop simple criteria to allow practitioners in these applications to rapidly and easily assess the potential impact of depletion. We use a global mass balance to show that two dimensionless parameters fully describe the role of depletion in both equilibrium surface properties and timescales to reach equilibrium. The dimensionless parameters represent the potential mass lost to the interface, denoted ζ, and the surface activity of the surfactant, denoted f. Characteristic transport timescales are shown to be a function of the finite geometry. A scaling analysis is developed for the case of surfactant dissolved inside a spherical drop, and compared with that of a finite spherical shell. The analyses developed here lead to simple criteria that are useful even when the surfactant properties are not well characterized or a full transport analysis is difficult. The criteria can be generalized to adsorption at solid surfaces.


Rheologica Acta | 2016

Stress relaxation of bi-disperse polystyrene melts

Ludovica Hengeller; Qian Huang; Nicolas J. Alvarez; Kristoffer Almdal; Ole Hassager

We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily. Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains.


Journal of Rheology | 2016

Oscillatory squeeze flow for the study of linear viscoelastic behavior

Sara Lindeblad Wingstrand; Nicolas J. Alvarez; Ole Hassager; John M. Dealy

The squeezing of a sample between parallel plates has been used for many years to characterize the rheological behavior of soft, purely viscous materials, and in recent times, small-amplitude oscillatory squeezing has been proposed as a means to determine the linear viscoelastic properties of molten polymers and suspensions. The principal advantage of squeeze flow rheometer over rotational devices is the simplicity of the apparatus. It has no air bearing and is much less expensive and easier to use. Accuracy may be somewhat reduced, but for quality control purposes, it could be quite useful. It might also find application as the central component of a high-throughput rheometer for evaluating experimental materials. The deformation is not simple shear, but equations have been derived to show that the oscillatory compressive (normal) force that is measured can serve as a basis for calculating the storage and loss moduli. These theories as well as instruments that have been developed to generate the required deformation are described, and applications to a variety of materials are described.


ACS Nano | 2018

Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes

Bilen Akuzum; Kathleen Maleski; Babak Anasori; Pavel Lelyukh; Nicolas J. Alvarez; E. Caglan Kumbur; Yury Gogotsi

Understanding the rheological properties of two-dimensional (2D) materials in suspension is critical for the development of various solution processing and manufacturing techniques. 2D carbides and nitrides (MXenes) constitute one of the largest families of 2D materials with >20 synthesized compositions and applications already ranging from energy storage to medicine to optoelectronics. However, in spite of a report on clay-like behavior, not much is known about their rheological response. In this study, rheological behavior of single- and multilayer Ti3C2T x in aqueous dispersions was investigated. Viscous and viscoelastic properties of MXene dispersions were studied over a variety of concentrations from colloidal dispersions to high loading slurries, showing that a multilayer MXene suspension with up to 70 wt % can exhibit flowability. Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties. Surprisingly, high viscosity was observed at very low concentrations for solutions of single-layer MXene flakes. Single-layer colloidal solutions were found to exhibit partial elasticity even at the lowest tested concentrations (<0.20 mg/mL) due to the presence of strong surface charge and excellent hydrophilicity of MXene, making them amenable to fabrication at dilute concentrations. Overall, the findings of this study provide fundamental insights into the rheological response of this quickly growing 2D family of materials in aqueous environments as well as offer guidelines for processing of MXenes.

Collaboration


Dive into the Nicolas J. Alvarez's collaboration.

Top Co-Authors

Avatar

Ole Hassager

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Lynn M. Walker

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Shelley L. Anna

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Qian Huang

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Aamir Shabbir

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Koblitz Rasmussen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge