Nicolas Kuehn
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas Kuehn.
Bulletin of Earthquake Engineering | 2014
John Douglas; Sinan Akkar; Gabriele Ameri; Pierre Yves Bard; Dino Bindi; Julian J. Bommer; Sanjay Singh Bora; Fabrice Cotton; Boumédiène Derras; Marcel Hermkes; Nicolas Kuehn; L. Luzi; Marco Massa; Francesca Pacor; Carsten Riggelsen; M. Abdullah Sandıkkaya; Frank Scherbaum; Peter J. Stafford; Paola Traversa
This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan.
Earthquake Spectra | 2011
Frank Scherbaum; Nicolas Kuehn
Logic trees have become the most popular tool for the quantification of epistemic uncertainties in probabilistic seismic hazard assessment (PSHA). In a logic-tree framework, epistemic uncertainty is expressed in a set of branch weights, by which an expert or an expert group assigns degree-of-belief values to the applicability of the corresponding branch models. Despite the popularity of logic-trees, however, one finds surprisingly few clear commitments to what logic-tree branch weights are assumed to be (even by hazard analysts designing logic trees). In the present paper we argue that it is important for hazard analysts to accept the probabilistic framework from the beginning for assigning logic-tree branch weights. In other words, to accept that logic-tree branch weights are probabilities in the axiomatic sense, independent of ones preference for the philosophical interpretation of probabilities. We demonstrate that interpreting logic-tree branch weights merely as a numerical measure of “model quality,” which are then subsequently normalized to sum up to unity, will with increasing number of models inevitably lead to an apparent insensitivity of hazard curves on the logic-tree branch weights, which may even be mistaken for robustness of the results. Finally, we argue that assigning logic-tree branch weights in a sequential fashion may improve their logical consistency.
Bulletin of Earthquake Engineering | 2014
Sanjay Singh Bora; Frank Scherbaum; Nicolas Kuehn; Peter J. Stafford
One of the major challenges related with the current practice in seismic hazard studies is the adjustment of empirical ground motion prediction equations (GMPEs) to different seismological environments. We believe that the key to accommodating differences in regional seismological attributes of a ground motion model lies in the Fourier spectrum. In the present study, we attempt to explore a new approach for the development of response spectral GMPEs, which is fully consistent with linear system theory when it comes to adjustment issues. This approach consists of developing empirical prediction equations for Fourier spectra and for a particular duration estimate of ground motion which is tuned to optimize the fit between response spectra obtained through the random vibration theory framework and the classical way. The presented analysis for the development of GMPEs is performed on the recently compiled reference database for seismic ground motion in Europe (RESORCE-2012). Although, the main motivation for the presented approach is the adjustability and the use of the corresponding model to generate data driven host-to-target conversions, even as a standalone response spectral model it compares reasonably well with the GMPEs of Ambraseys et al. (Bull Earthq Eng 3:1–53, 2005), Akkar and Bommer (Seismol Res Lett 81(2):195–206, 2010) and Akkar and Cagnan (Bull Seismol Soc Am 100(6):2978–2995, 2010).
Bulletin of the Seismological Society of America | 2016
Sanjay Singh Bora; Frank Scherbaum; Nicolas Kuehn; Peter J. Stafford
Abstract The functional form of empirical response spectral ground‐motion prediction equations (GMPEs) is often derived using concepts borrowed from Fourier spectral modeling of ground motion. As these GMPEs are subsequently calibrated with empirical observations, this may not appear to pose any major problems in the prediction of ground motion for a particular earthquake scenario. However, the assumption that Fourier spectral concepts persist for response spectra can lead to undesirable consequences when it comes to the adjustment of response spectral GMPEs to represent conditions not covered in the original empirical data set. In this context, a couple of important questions arise, for example, what are the distinctions and/or similarities between Fourier and response spectra of ground motions? And, if they are different, then what is the mechanism responsible for such differences and how do adjustments that are made to Fourier amplitude spectrum (FAS) manifest in response spectra? The present article explores the relationship between the Fourier and response spectrum of ground motion by using random vibration theory (RVT). With a simple Brune (1970, 1971) source model, RVT‐generated acceleration spectra for a fixed magnitude and distance scenario are used. The RVT analyses reveal that the scaling of low oscillator‐frequency response spectral ordinates can be treated as being equivalent to the scaling of the corresponding Fourier spectral ordinates. However, the high oscillator‐frequency response spectral ordinates are controlled by a rather wide band of Fourier spectral ordinates. In fact, the peak ground acceleration, counter to the popular perception that it is a reflection of the high‐frequency characteristics of ground motion, is controlled by the entire Fourier spectrum of ground motion. Additionally, this article demonstrates how an adjustment made to FAS is similar or different to the same adjustment made to response spectral ordinates. For this purpose, two cases: adjustments to the stress parameter (Δ σ ) (source term), and adjustments to the attributes reflecting site response ( V S ‐ κ 0 ) are considered.
Earthquake Spectra | 2010
Frank Scherbaum; Nicolas Kuehn; Matthias Ohrnberger; Andreas Koehler
Logic trees have become a popular tool to capture epistemic uncertainties in seismic hazard analysis. They are commonly used by assigning weights to models on a purely descriptive basis (nominal scale). This invites the creation of unintended inconsistencies regarding the weights on the corresponding hazard curves. On the other hand, for human experts it is difficult to confidently express degrees-of-beliefs in particular numerical values. Here we demonstrate for ground-motion models how the model and the value-based perspectives can be partially reconciled by using high-dimensional information-visualization techniques. For this purpose we use Sammons (1969) mapping and self-organizing mapping to project ground-motion models onto a two-dimensional map (an ordered metric set). Here they can be evaluated jointly according to their proximity in predicting similar ground motions, potentially making the assignment of logic tree weights consistent with their ground motion characteristics without having to abandon the model-based perspective.
Bulletin of the Seismological Society of America | 2014
Christian Molkenthin; Frank Scherbaum; Andreas Griewank; Nicolas Kuehn; Peter J. Stafford
Abstract Response spectra are of fundamental importance in earthquake engineering and represent a standard measure in seismic design for the assessment of structural performance. However, unlike Fourier spectral amplitudes, the relationship of response spectral amplitudes to seismological source, path, and site characteristics is not immediately obvious and might even be considered counterintuitive for high oscillator frequencies. The understanding of this relationship is nevertheless important for seismic‐hazard analysis. The purpose of the present study is to comprehensively characterize the variation of response spectral amplitudes due to perturbations of the causative seismological parameters. This is done by calculating the absolute parameter sensitivities (sensitivity coefficients) defined as the partial derivatives of the model output with respect to its input parameters. To derive sensitivities, we apply algorithmic differentiation (AD). This powerful approach is extensively used for sensitivity analysis of complex models in meteorology or aerodynamics. To the best of our knowledge, AD has not been explored yet in the seismic‐hazard context. Within the present study, AD was successfully implemented for a proven and extensively applied simulation program for response spectra (Stochastic Method SIMulation [SMSIM]) using the TAPENADE AD tool. We assess the effects and importance of input parameter perturbations on the shape of response spectra for different regional stochastic models in a quantitative way. Additionally, we perform sensitivity analysis regarding adjustment issues of ground‐motion prediction equations.
Bulletin of the Seismological Society of America | 2009
Nicolas Kuehn; Frank Scherbaum; Carsten Riggelsen
Abstract Empirical ground-motion models used in seismic hazard analysis are commonly derived by regression of observed ground motions against a chosen set of predictor variables. Commonly, the model building process is based on residual analysis and/or expert knowledge and/or opinion, while the quality of the model is assessed by the goodness-of-fit to the data. Such an approach, however, bears no immediate relation to the predictive power of the model and with increasing complexity of the models is increasingly susceptible to the danger of overfitting. Here, a different, primarily data-driven method for the development of ground-motion models is proposed that makes use of the notion of generalization error to counteract the problem of overfitting. Generalization error directly estimates the average prediction error on data not used for the model generation and, thus, is a good criterion to assess the predictive capabilities of a model. The approach taken here makes only few a priori assumptions. At first, peak ground acceleration and response spectrum values are modeled by flexible, nonphysical functions (polynomials) of the predictor variables. The inclusion of a particular predictor and the order of the polynomials are based on minimizing generalization error. The approach is illustrated for the next generation of ground-motion attenuation dataset. The resulting model is rather complex, comprising 48 parameters, but has considerably lower generalization error than functional forms commonly used in ground-motion models. The model parameters have no physical meaning, but a visual interpretation is possible and can reveal relevant characteristics of the data, for example, the Moho bounce in the distance scaling. In a second step, the regression model is approximated by an equivalent stochastic model, making it physically interpretable. The resulting resolvable stochastic model parameters are comparable to published models for western North America. In general, for large datasets generalization error minimization provides a viable method for the development of empirical ground-motion models.
Bulletin of Earthquake Engineering | 2014
Marcel Hermkes; Nicolas Kuehn; Carsten Riggelsen
This paper presents a Bayesian non-parametric method based on Gaussian Process (GP) regression to derive ground-motion models for peak-ground parameters and response spectral ordinates. Due to its non-parametric nature there is no need to specify any fixed functional form as in parametric regression models. A GP defines a distribution over functions, which implicitly expresses the uncertainty over the underlying data generating process. An advantage of GP regression is that it is possible to capture the whole uncertainty involved in ground-motion modeling, both in terms of aleatory variability as well as epistemic uncertainty associated with the underlying functional form and data coverage. The distribution over functions is updated in a Bayesian way by computing the posterior distribution of the GP after observing ground-motion data, which in turn can be used to make predictions. The proposed GP regression models is evaluated on a subset of the RESORCE data base for the SIGMA project. The experiments show that GP models have a better generalization error than a simple parametric regression model. A visual assessment of different scenarios demonstrates that the inferred GP models are physically plausible.
Bulletin of the Seismological Society of America | 2011
Nicolas Kuehn; Carsten Riggelsen; Frank Scherbaum
Abstract Bayesian networks are a powerful and increasingly popular tool for reasoning under uncertainty, offering intuitive insight into (probabilistic) data-generating processes. They have been successfully applied to many different fields, including bioinformatics. In this paper, Bayesian networks are used to model the joint-probability distribution of selected earthquake, site, and ground-motion parameters. This provides a probabilistic representation of the independencies and dependencies between these variables. In particular, contrary to classical regression, Bayesian networks do not distinguish between target and predictors, treating each variable as random variable. The capability of Bayesian networks to model the ground-motion domain in probabilistic seismic hazard analysis is shown for a generic situation. A Bayesian network is learned based on a subset of the Next Generation Attenuation (NGA) dataset, using 3342 records from 154 earthquakes. Because no prior assumptions about dependencies between particular parameters are made, the learned network displays the most probable model given the data. The learned network shows that the ground-motion parameter (horizontal peak ground acceleration, PGA) is directly connected only to the moment magnitude, Joyner–Boore distance, fault mechanism, source-to-site azimuth, and depth to a shear-wave horizon of 2.5 km/s (Z2.5). In particular, the effect of V S 30 is mediated by Z2.5. Comparisons of the PGA distributions based on the Bayesian networks with the NGA model of Boore and Atkinson (2008) show a reasonable agreement in ranges of good data coverage.
Bulletin of the Seismological Society of America | 2016
Niels Landwehr; Nicolas Kuehn; Tobias Scheffer; Norman Abrahamson
Traditional probabilistic seismic‐hazard analysis as well as the estimation of ground‐motion models (GMMs) is based on the ergodic assumption, which means that the distribution of ground motions over time at a given site is the same as their spatial distribution over all sites for the same magnitude, distance, and site condition. With a large increase in the number of recorded ground‐motion data, there are now repeated observations at given sites and from multiple earthquakes in small regions, so that assumption can be relaxed. We use a novel approach to develop a nonergodic GMM, which is cast as a varying‐coefficient model (VCM). In this model, the coefficients are allowed to vary by geographical location, which makes it possible to incorporate effects of spatially varying source, path, and site conditions. Hence, a separate set of coefficients is estimated for each source and site coordinate in the data set. The coefficients are constrained to be similar for spatially nearby locations. This is achieved by placing a Gaussian process prior on the coefficients. The amount of correlation is determined by the data. The spatial correlation structure of the model allows one to extrapolate the varying coefficients to a new location and trace the corresponding uncertainties. The approach is illustrated with the Next Generation Attenuation‐West2 data set, using only Californian records. The VCM outperforms a traditionally estimated GMM in terms of generalization error and leads to a reduction in the aleatory standard deviation by ∼40%, which has important implications for seismic‐hazard calculations. The scaling of the model with respect to its predictor variables such as magnitude and distance is physically plausible. The epistemic uncertainty associated with the predicted ground motions is small in places where events or stations are close and large where data are sparse. Online Material: Maps showing the spatially varying coefficients across California and tables of correlation functions.