Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas L. Fawzi is active.

Publication


Featured researches published by Nicolas L. Fawzi.


Nature | 2011

Atomic resolution dynamics on the surface of amyloid β protofibrils probed by solution NMR

Nicolas L. Fawzi; Jinfa Ying; Rodolfo Ghirlando; Dennis A. Torchia; G. Marius Clore

Exchange dynamics between molecules free in solution and bound to the surface of a large supramolecular structure, a polymer, a membrane or solid support are important in many phenomena in biology and materials science. Here we present a novel and generally applicable solution NMR technique, known as dark-state exchange saturation transfer (DEST), to probe such exchange phenomena with atomic resolution. This is illustrated by the exchange reaction between amyloid-β (Aβ) monomers and polydisperse, NMR-invisible (‘dark’) protofibrils, a process of significant interest because the accumulation of toxic, aggregated forms of Aβ, from small oligomers to very large assemblies, has been implicated in the aetiology of Alzheimer’s disease. The 15N-DEST experiment imprints with single-residue-resolution dynamic information on the protofibril-bound species in the form of 15N transverse relaxation rates (15N-R2) and exchange kinetics between monomers and protofibrils onto the easily observed two-dimensional 1H–15N correlation spectrum of the monomer. The exchanging species on the protofibril surface comprise an ensemble of sparsely populated states where each residue is either tethered to (through other residues) or in direct contact with the surface. The first eight residues exist predominantly in a mobile tethered state, whereas the largely hydrophobic central region and part of the carboxy (C)-terminal hydrophobic region are in direct contact with the protofibril surface for a significant proportion of the time. The C-terminal residues of both Aβ40 and Aβ42 display lower affinity for the protofibril surface, indicating that they are likely to be surface exposed rather than buried as in structures of Aβ fibrils, and might therefore comprise the critical nucleus for fibril formation. The values, however, are significantly larger for the C-terminal residues of Aβ42 than Aβ40, which might explain the former’s higher propensity for rapid aggregation and fibril formation.


Molecular Cell | 2015

Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II.

Kathleen A. Burke; Abigail M. Janke; Christy L. Rhine; Nicolas L. Fawzi

Phase-separated states of proteins underlie ribonucleoprotein (RNP) granules and nuclear RNA-binding protein assemblies that may nucleate protein inclusions associated with neurodegenerative diseases. We report that the N-terminal low-complexity domain of the RNA-binding protein Fused in Sarcoma (FUS LC) is structurally disordered and forms a liquid-like phase-separated state resembling RNP granules. This state directly binds the C-terminal domain of RNA polymerase II. Phase-separated FUS lacks static structures as probed by fluorescence microscopy, indicating they are distinct from both protein inclusions and hydrogels. We use solution nuclear magnetic resonance spectroscopy to directly probe the dynamic architecture within FUS liquid phase-separated assemblies. Importantly, we find that FUS LC retains disordered secondary structure even in the liquid phase-separated state. Therefore, we propose that disordered protein granules, even those made of aggregation-prone prion-like domains, are dynamic and disordered molecular assemblies with transiently formed protein-protein contacts.


Journal of the American Chemical Society | 2008

Structure and Dynamics of the Aβ21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations

Nicolas L. Fawzi; Aaron H. Phillips; Jory Z. Ruscio; Michaeleen Doucleff; David E. Wemmer; Teresa Head-Gordon

We combine molecular dynamics simulations and new high-field NMR experiments to describe the solution structure of the Abeta(21-30) peptide fragment that may be relevant for understanding structural mechanisms related to Alzheimers disease. By using two different empirical force-field combinations, we provide predictions of the three-bond scalar coupling constants ((3)J(H(N)H(alpha))), chemical-shift values, (13)C relaxation parameters, and rotating-frame nuclear Overhauser effect spectroscopy (ROESY) crosspeaks that can then be compared directly to the same observables measured in the corresponding NMR experiment of Abeta(21-30). We find robust prediction of the (13)C relaxation parameters and medium-range ROESY crosspeaks by using new generation TIP4P-Ew water and Amber ff99SB protein force fields, in which the NMR validates that the simulation yields both a structurally and dynamically correct ensemble over the entire Abeta(21-30) peptide. Analysis of the simulated ensemble shows that all medium-range ROE restraints are not satisfied simultaneously and demonstrates the structural diversity of the Abeta(21-30) conformations more completely than when determined from the experimental medium-range ROE restraints alone. We find that the structural ensemble of the Abeta(21-30) peptide involves a majority population (approximately 60%) of unstructured conformers, lacking any secondary structure or persistent hydrogen-bonding networks. However, the remaining minority population contains a substantial percentage of conformers with a beta-turn centered at Val24 and Gly25, as well as evidence of the Asp23 to Lys28 salt bridge important to the fibril structure. This study sets the stage for robust theoretical work on Abeta(1-40) and Abeta(1-42), for which collection of detailed NMR data on the monomer will be more challenging because of aggregation and fibril formation on experimental timescales at physiological conditions. In addition, we believe that the interplay of modern molecular simulation and high-quality NMR experiments has reached a fruitful stage for characterizing structural ensembles of disordered peptides and proteins in general.


Biochemistry | 2011

Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides.

K. Aurelia Ball; Aaron H. Phillips; Paul S. Nerenberg; Nicolas L. Fawzi; David E. Wemmer; Teresa Head-Gordon

The interplay of modern molecular simulation and high-quality nuclear magnetic resonance (NMR) experiments has reached a fruitful stage for quantitative characterization of structural ensembles of disordered peptides. Amyloid-β 1-42 (Aβ42), the primary peptide associated with Alzheimers disease, and fragments such as Aβ21-30 are both classified as intrinsically disordered peptides (IDPs). We use a variety of NMR observables to validate de novo molecular dynamics simulations in explicit water to characterize the tertiary structure ensemble of Aβ42 and Aβ21-30 from the perspective of their classification as IDPs. Unlike the Aβ21-30 fragment that conforms to expectations of an IDP that is primarily extended, we find that Aβ42 samples conformations reflecting all possible secondary structure categories and spans the range of IDP classifications from collapsed structured states to highly extended conformations, making it an IDP with a far more heterogeneous tertiary ensemble.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mechanistic details of a protein-protein association pathway revealed by paramagnetic relaxation enhancement titration measurements

Nicolas L. Fawzi; Michaeleen Doucleff; Jeong-Yong Suh; G. Marius Clore

Protein–protein association generally proceeds via the intermediary of a transient, lowly populated, encounter complex ensemble. The mechanism whereby the interacting molecules in this ensemble locate their final stereospecific structure is poorly understood. Further, a fundamental question is whether the encounter complex ensemble is an effectively homogeneous population of nonspecific complexes or whether it comprises a set of distinct structural and thermodynamic states. Here we use intermolecular paramagnetic relaxation enhancement (PRE), a technique that is exquisitely sensitive to lowly populated states in the fast exchange regime, to characterize the mechanistic details of the transient encounter complex interactions between the N-terminal domain of Enzyme I (EIN) and the histidine-containing phosphocarrier protein (HPr), two major bacterial signaling proteins. Experiments were conducted at an ionic strength of 150 mM NaCl to eliminate any spurious nonspecific associations not relevant under physiological conditions. By monitoring the dependence of the intermolecular transverse PRE (Γ2) rates measured on 15N-labeled EIN on the concentration of paramagnetically labeled HPr, two distinct types of encounter complex configurations along the association pathway are identified and dissected. The first class, which is in equilibrium with and sterically occluded by the specific complex, probably involves rigid body rotations and small translations near or at the active site. In contrast, the second class of encounter complex configurations can coexist with the specific complex to form a ternary complex ensemble, which may help EIN compete with other HPr binding partners in vivo by increasing the effective local concentration of HPr even when the active site of EIN is occupied.


The EMBO Journal | 2017

Phosphorylation of the FUS low‐complexity domain disrupts phase separation, aggregation, and toxicity

Zachary Monahan; Veronica H. Ryan; Abigail M. Janke; Kathleen A. Burke; Shannon N Rhoads; Gül H. Zerze; Robert N. O'Meally; Gregory L. Dignon; Alexander E. Conicella; Wenwei Zheng; Robert B. Best; Robert N. Cole; Jeetain Mittal; Frank Shewmaker; Nicolas L. Fawzi

Neuronal inclusions of aggregated RNA‐binding protein fused in sarcoma (FUS) are hallmarks of ALS and frontotemporal dementia subtypes. Intriguingly, FUSs nearly uncharged, aggregation‐prone, yeast prion‐like, low sequence‐complexity domain (LC) is known to be targeted for phosphorylation. Here we map in vitro and in‐cell phosphorylation sites across FUS LC. We show that both phosphorylation and phosphomimetic variants reduce its aggregation‐prone/prion‐like character, disrupting FUS phase separation in the presence of RNA or salt and reducing FUS propensity to aggregate. Nuclear magnetic resonance spectroscopy demonstrates the intrinsically disordered structure of FUS LC is preserved after phosphorylation; however, transient domain collapse and self‐interaction are reduced by phosphomimetics. Moreover, we show that phosphomimetic FUS reduces aggregation in human and yeast cell models, and can ameliorate FUS‐associated cytotoxicity. Hence, post‐translational modification may be a mechanism by which cells control physiological assembly and prevent pathological protein aggregation, suggesting a potential treatment pathway amenable to pharmacologic modulation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.

David S. Libich; Nicolas L. Fawzi; Jinfa Ying; G. Marius Clore

The mechanism whereby the prototypical chaperonin GroEL performs work on substrate proteins has not yet been fully elucidated, hindered by lack of detailed structural and dynamic information on the bound substrate. Previous investigations have produced conflicting reports on the state of GroEL-bound polypeptides, largely due to the transient and dynamic nature of these complexes. Here, we present a unique approach, based on combined analysis of four complementary relaxation-based NMR experiments, to probe directly the “dark” NMR-invisible state of the model, intrinsically disordered, polypeptide amyloid β (Aβ40) bound to GroEL. The four NMR experiments, lifetime line-broadening, dark-state exchange saturation transfer, relaxation dispersion, and small exchange-induced chemical shifts, are dependent in different ways on the overall exchange rates and populations of the free and bound states of the substrate, as well as on residue-specific dynamics and structure within the bound state as reported by transverse magnetization relaxation rates and backbone chemical shifts, respectively. Global fitting of all the NMR data shows that the complex is transient with a lifetime of <1 ms, that binding involves two predominantly hydrophobic segments corresponding to predicted GroEL consensus binding sequences, and that the structure of the bound polypeptide remains intrinsically and dynamically disordered with minimal changes in secondary structure propensity relative to the free state. Our results establish a unique method to observe NMR-invisible dynamic states of GroEL-bound substrates and to describe at atomic resolution the events between substrate binding and encapsulation that are crucial for understanding the normal and stress-related metabolic function of chaperonins.


Journal of Biomolecular NMR | 2011

A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data

Nicolas L. Fawzi; Mark R. Fleissner; Nicholas J. Anthis; Tamás Kálai; Kálmán Hideg; Wayne L. Hubbell; G. Marius Clore

The measurement of 1H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metal-chelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the paramagnetic center. Here, we present a novel, disulfide-linked nitroxide spin label, R1p, as an alternative to these flexible labels for PRE studies. When introduced at solvent-exposed α-helical positions in two model proteins, calmodulin (CaM) and T4 lysozyme (T4L), EPR measurements show that the R1p side chain exhibits dramatically reduced internal motion compared to the commonly used R1 spin label (generated by reacting cysteine with the spin labeling compound often referred to as MTSL). Further, only a single nitroxide position is necessary to account for the PREs arising from CaM S17R1p, while an ensemble comprising multiple conformations is necessary for those observed for CaM S17R1. Together, these observations suggest that the nitroxide adopts a single, fixed position when R1p is placed at solvent-exposed α-helical positions, greatly simplifying the interpretation of PRE data by removing the need to account for the intrinsic flexibility of the spin label.


Protein Science | 2005

Influence of denatured and intermediate states of folding on protein aggregation

Nicolas L. Fawzi; Victor Chubukov; Louis A. Clark; Scott D. Brown; Teresa Head-Gordon

We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self‐assembles to the same β/β topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.


Proteins | 2007

A coarse‐grained α‐carbon protein model with anisotropic hydrogen‐bonding

Eng-Hui Yap; Nicolas L. Fawzi; Teresa Head-Gordon

We develop a sequence based α‐carbon model to incorporate a mean field estimate of the orientation dependence of the polypeptide chain that gives rise to specific hydrogen bond pairing to stabilize α‐helices and β‐sheets. We illustrate the success of the new protein model in capturing thermodynamic measures and folding mechanism of proteins L and G. Compared to our previous coarse‐grained model, the new model shows greater folding cooperativity and improvements in designability of protein sequences, as well as predicting correct trends for kinetic rates and mechanism for proteins L and G. We believe the model is broadly applicable to other protein folding and protein–protein co‐assembly processes, and does not require experimental input beyond the topology description of the native state. Even without tertiary topology information, it can also serve as a mid‐resolution protein model for more exhaustive conformational search strategies that can bridge back down to atomic descriptions of the polypeptide chain. Proteins 2008.

Collaboration


Dive into the Nicolas L. Fawzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Marius Clore

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinfa Ying

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis A. Torchia

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge