Nicolas L'Heureux
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas L'Heureux.
The FASEB Journal | 1998
Annie F. Black; François Berthod; Nicolas L'Heureux; Lucie Germain; François A. Auger
For patients with extensive burns, wound coverage with an autologous in vitro reconstructed skin made of both dermis and epidermis should be the best alternative to split‐thickness graft. Unfortunately, various obstacles have delayed the widespread use of composite skin substitutes. Insufficient vascularization has been proposed as the most likely reason for their unreliable survival. Our purpose was to develop a vascular‐like network inside tissue‐engineered skin in order to improve graft vascularization. To reach this aim, we fabricated a collagen biopolymer in which three human cell types—keratinocytes, dermal fibroblasts, and umbilical vein endothelial cells—were cocultured. We demonstrated that the endothelialized skin equivalent (ESE) promoted spontaneous formation of capillary‐like structures in a highly differentiated extracellular matrix. Immunohistochemical analysis and transmission electron microscopy of the ESE showed characteristics associated with the microvasculature in vivo (von Willebrand factor, Weibel‐Palade bodies, basement membrane material, and intercellular junctions). We have developed the first endothelialized human tissue‐engineered skin in which a network of capillary‐like tubes is formed. The transplantation of this ESE on human should accelerate graft revascularization by inosculation of its preexisting capillary‐like network with the patients own blood vessels, as it is observed with autografts. In addition, the ESE turns out to be a promising in vitro angiogenesis model.—Black, A. F., Berthod, F., L’Heureux, N., Germain, L., Auger, F. A. In vitro reconstruction of a human capillary‐like network in a tissue‐engineered skin equivalent. FASEB J. 12, 1331–1340 (1998)
The Lancet | 2009
Todd N. McAllister; Marcin Maruszewski; Sergio A. Garrido; Nathalie Dusserre; Alicia Marini; Krzysztof Zagalski; Alejandro Fiorillo; Hernan Avila; Ximena Manglano; Jorge Antonelli; Alfred Kocher; Marian Zembala; Lech Cierpka; Luis de la Fuente; Nicolas L'Heureux
BACKGROUND Application of a tissue-engineered vascular graft for small-diameter vascular reconstruction has been a long awaited and much anticipated advance for vascular surgery. We report results after a minimum of 6 months of follow-up for the first ten patients implanted with a completely biological and autologous tissue-engineered vascular graft. METHODS Ten patients with end-stage renal disease who had been receiving haemodialysis through an access graft that had a high probability of failure, and had had at least one previous access failure, were enrolled from centres in Argentina and Poland between September, 2004, and April, 2007. Completely autologous tissue-engineered vascular grafts were grown in culture supplemented with bovine serum, implanted as arteriovenous shunts, and assessed for both mechanical stability during the safety phase (0-3 months) and effectiveness after haemodialysis was started. FINDINGS Three grafts failed within the safety phase, which is consistent with failure rates expected for this high-risk patient population. One patient was withdrawn from the study because of severe gastrointestinal bleeding shortly before implantation, and another died of unrelated causes during the safety period with a patent graft. The remaining five patients had grafts functioning for haemodialysis 6-20 months after implantation, and a total of 68 patient-months of patency. In these five patients, only one intervention (surgical correction) was needed to maintain secondary patency. Overall, primary patency was maintained in seven (78%) of the remaining nine patients 1 month after implantation and five (60%) of the remaining eight patients 6 months after implantation. INTERPRETATION Our proportion of primary patency in this high-risk cohort approaches Dialysis Outcomes Quality Initiative objectives (76% of patients 3 months after implantation) for arteriovenous fistulas, averaged across all patient populations.
Journal of Vascular Surgery | 1993
Nicolas L'Heureux; Lucie Germain; Raymond Labbé; François A. Auger
PURPOSE The purpose of this study was to create a tubular vascular model exclusively made of human cells and collagen. METHODS The blood vessel equivalent was constructed with the three following human cell types: vascular smooth muscle cells, endothelial cells, and fibroblasts. A tissuelike structure was obtained from the contraction of a tubular collagen gel (human origin) by vascular smooth muscle cells, which created a media-like structure. An adventitia-like tissue was added around the media-like structure by embedding fibroblasts into a collagen gel. An endothelium was established within the tubular structure after intraluminal cell seeding. RESULTS Cell orientation and gel contraction were followed up over time. Vascular smooth muscle cells developed a complex tridimensional network and were oriented in a circular fashion around the tubes axis. In contrast, fibroblasts were randomly oriented. A viable, homogeneous, and well-characterized endothelium was observed. These endothelial cells showed a slightly elongated structure and were oriented parallel to this vascular equivalent axis. CONCLUSION An in vitro tridimensional vascular model that exhibits some phenotypic characteristics of in vivo vascular cells could be useful in the study of events that lead to atherosclerotic plaque formations.
Biomaterials | 2009
Gerhardt Konig; Todd N. McAllister; Nathalie Dusserre; Sergio A. Garrido; Corey Iyican; Alicia Marini; Alex Fiorillo; Hernan Avila; Krzysztof Zagalski; Marcin Maruszewski; Alyce Linthurst Jones; Lech Cierpka; Luis de la Fuente; Nicolas L'Heureux
We have previously reported the initial clinical feasibility with our small diameter tissue engineered blood vessel (TEBV). Here we present in vitro results of the mechanical properties of the TEBVs of the first 25 patients enrolled in an arterio-venous (A-V) shunt safety trial, and compare these properties with those of risk-matched human vein and artery. TEBV average burst pressures (3490+/-892 mmHg, n=230) were higher than native saphenous vein (SV) (1599+/-877 mmHg, n=7), and not significantly different from native internal mammary artery (IMA) (3196+/-1264 mmHg, n=16). Suture retention strength for the TEBVs (152+/-50 gmf) was also not significantly different than IMA (138+/-50 gmf). Compliance for the TEBVs prior to implantation (3.4+/-1.6%/100 mmHg) was lower than IMA (11.5+/-3.9%/100 mmHg). By 6 months post-implant, the TEBV compliance (8.8+/-4.2%/100 mmHg, n=5) had increased to values comparable to IMA, and showed no evidence of dilation or aneurysm formation. With clinical time points beyond 21 months as an A-V shunt without intervention, the mechanical tests and subsequent lot release criteria reported here would seem appropriate minimum standards for clinical use of tissue engineered vessels.
Nature Reviews Cardiology | 2007
Nicolas L'Heureux; Nathalie Dusserre; Alicia Marini; Sergio A. Garrido; Luis de la Fuente; Todd N. McAllister
There is a considerable clinical need for alternatives to the autologous vein and artery tissues used for vascular reconstructive surgeries such as CABG, lower limb bypass, arteriovenous shunts and repair of congenital defects to the pulmonary outflow tract. So far, synthetic materials have not matched the efficacy of native tissues, particularly in small diameter applications. The development of cardiovascular tissue engineering introduced the possibility of a living, biological graft that might mimic the functional properties of native vessels. While academic research in the field of tissue engineering in general has been active, as yet there has been no clear example of clinical and commercial success. The recent transition of cell-based therapies from experimental to clinical use has, however, reinvigorated the field of cardiovascular tissue engineering. Here, we discuss the most promising approaches specific to tissue-engineered blood vessels and briefly introduce our recent clinical results. The unique regulatory, reimbursement and production challenges facing personalized medicine are also discussed.
In Vitro Cellular & Developmental Biology – Animal | 1999
Martine Michel; Nicolas L'Heureux; Roxane Pouliot; Wen Xu; François A. Auger; Lucie Germain
SummaryWe designed a new tissue-engineered skin equivalent in which complete pilosebaceous units were integrated. This model was produced exclusively from human fibroblasts and keratinocytes and did not contain any synthetic material. Fibroblasts were cultured for 35 d with ascorbic acid and formed a thick fibrous sheet in the culture dish. The dermal equivalent was composed of stacked fibroblast sheets and exhibited some ultrastructural organization found in normal connective tissues. Keratinocytes seeded on this tissue formed a stratified and cornified epidermis and expressed typical markers of differentiation (keratin 10, filaggrin, and transglutaminase). After 4 wk of culture, a continuous and ultrastructurally organized basement membrane was observed and associated with the expression of laminin and collagen IV and VII. Complete pilosebaceous units were obtained by thermolysin digestion and inserted in this skin equivalent in order to assess the role of the transfollicular route in percutaneous absorption. The presence of hair follicles abolished the lag-time observed during hydrocortisone diffusion and increased significantly its rate of penetration in comparison to the control (skin equivalent with sham hair insertion). Therefore, this new hairy human skin equivalent model allowed an experimental design in which the only variable was the presence of pilosebaceous units and provided new data confirming the importance of hair follicles in percutaneous absorption.
Cells Tissues Organs | 2012
Marissa Peck; David Gebhart; Nathalie Dusserre; Todd N. McAllister; Nicolas L'Heureux
Dacron® (polyethylene terephthalate) and Goretex® (expanded polytetrafluoroethylene) vascular grafts have been very successful in replacing obstructed blood vessels of large and medium diameters. However, as diameters decrease below 6 mm, these grafts are clearly outperformed by transposed autologous veins and, particularly, arteries. With approximately 8 million individuals with peripheral arterial disease, over 500,000 patients diagnosed with end-stage renal disease, and over 250,000 patients per year undergoing coronary bypass in the USA alone, there is a critical clinical need for a functional small-diameter conduit [Lloyd-Jones et al., Circulation 2010;121:e46–e215]. Over the last decade, we have witnessed a dramatic paradigm shift in cardiovascular tissue engineering that has driven the field away from biomaterial-focused approaches and towards more biology-driven strategies. In this article, we review the preclinical and clinical efforts in the quest for a tissue-engineered blood vessel that is free of permanent synthetic scaffolds but has the mechanical strength to become a successful arterial graft. Special emphasis is given to the tissue engineering by self-assembly (TESA) approach, which has been the only one to reach clinical trials for applications under arterial pressure.
Journal of Vascular Access | 2011
Lech Cierpka; Krzysztof Zagalski; Sergio A. Garrido; Nathalie Dusserre; Sam Radochonski; Todd N. McAllister; Nicolas L'Heureux
Previously we reported on the mid- to long-term follow-up in the first clinical trial to use a completely autologous tissue-engineered graft in the high pressure circulation. In these early studies, living grafts were built from autologous fibroblasts and endothelial cells obtained from small skin and vein biopsies. The graft was assembled using a technique called tissue-engineering by self-assembly (TESA), where robust conduits were grown without support from exogenous biomaterials or synthetic scaffolding. One limitation with this earlier work was the long lead times required to build the completely autologous vascular graft. Here we report the first implant of a frozen, devitalized, completely autologous Lifeline™ vascular graft. In a departure from previous studies, the entire fibroblast layer, which provides the mechanical backbone of the graft, was air-dried then stored at −80°C until shortly before implant. Five days prior to implant, the devitalized conduit was rehydrated, and its lumen was seeded with living autologous endothelial cells to provide an antithrombogenic lining. The graft was implanted as an arteriovenous shunt between the brachial artery and the axillary vein in a patient who was dependent upon a semipermanent dialysis catheter placed in the femoral vein. Eight weeks postoperatively, the graft functions without complication. This strategy of preemptive skin and vein biopsy and cold-preserving autologous tissue allows the immediate availability of an autologous arteriovenous fistula, and is an important step forward in our strategy to provide allogeneic tissue-engineered grafts available “off-the-shelf”.
Journal of Cellular Physiology | 1997
Martine Michel; Nicolas L'Heureux; François A. Auger; Lucie Germain
The skins most important function is to act as a barrier against fluid loss, microorganism infections, and percutaneous absorption. To fulfill this role, keratinocytes proliferate and differentiate to produce a protective layer: the stratum corneum. Because stem cells are responsible for the production of differentiated progeny and stem cells (K19‐expressing cells) are less abundant in skin from older donors, the purpose of this study was to establish whether histological and functional properties of differentiating skin is influenced by donor age. The in vitro model developed for the evaluation of skin properties (Michel et al., 1995) was used to produce skin equivalents from newborn, child, and adult keratinocytes. Throughout maturation, skin equivalents were compared with corresponding skin biopsies for keratin, filaggrin, and transglutaminase expression. Percutaneous absorptions of hydrocortisone also were measured and correlated with lipid content. After 1 wk of immersed culture, the epidermal layer of newborn skin equivalents was thicker than child and adult epidermis. As expected, a greater proportion of cutaneous stem cells was present in newborn compared with children and adult skin equivalents. No age‐related difference was observed for differentiation markers. When skin equivalents were cultured at the air‐liquid interface, cell differentiation and stratum corneum formation were induced, and the age‐related variation in the thickness of the epidermal layer disappeared. Percutaneous absorption through these matured skin equivalents did not vary with age. Their lipid density and profile were similar. Accordingly, skin biopsies exhibited comparable percutaneous absorption profiles independently of donor age. In conclusion, although newborn skin equivalents, or skin biopsies, contained more stem cells than child and adult counterparts, no age‐related histological difference was observed in the differentiated tissues. Moreover, the functional barrier property of skins and matured skin equivalents did not vary with age. Therefore, both newborn and adult keratinocytes produce useful in vitro models to study epidermal differentiation processes involved in both normal and pathological states. J. Cell. Physiol. 171:179–189, 1997.
The FASEB Journal | 1998
Nicolas L'Heureux; Stéphanie Pâquet; Raymond Labbé; Lucie Germain; François A. Auger