Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Legrand is active.

Publication


Featured researches published by Nicolas Legrand.


Journal of Experimental Medicine | 2009

IL-15 trans-presentation promotes human NK cell development and differentiation in vivo

Nicholas D. Huntington; Nicolas Legrand; Nuno L. Alves; Barbara Jaron; Kees Weijer; Ariane Plet; Erwan Corcuff; Erwan Mortier; Yannick Jacques; Hergen Spits; James P. Di Santo

The in vivo requirements for human natural killer (NK) cell development and differentiation into cytotoxic effectors expressing inhibitory receptors for self–major histocompatability complex class I (MHC-I; killer Ig-like receptors [KIRs]) remain undefined. Here, we dissect the role of interleukin (IL)-15 in human NK cell development using Rag2−/−γc−/− mice transplanted with human hematopoietic stem cells. Human NK cell reconstitution was intrinsically low in this model because of the poor reactivity to mouse IL-15. Although exogenous human IL-15 (hIL-15) alone made little improvement, IL-15 coupled to IL-15 receptor α (IL-15Rα) significantly augmented human NK cells. IL-15–IL-15Rα complexes induced extensive NK cell proliferation and differentiation, resulting in accumulation of CD16+KIR+ NK cells, which was not uniquely dependent on enhanced survival or preferential responsiveness of this subset to IL-15. Human NK cell differentiation in vivo required hIL-15 and progressed in a linear fashion from CD56hiCD16−KIR− to CD56loCD16+KIR−, and finally to CD56loCD16+KIR+. These data provide the first evidence that IL-15 trans-presentation regulates human NK cell homeostasis. Use of hIL-15 receptor agonists generates a robust humanized immune system model to study human NK cells in vivo. IL-15 receptor agonists may provide therapeutic tools to improve NK cell reconstitution after bone marrow transplants, enhance graft versus leukemia effects, and increase the pool of IL-15–responsive cells during immunotherapy strategies.


Cell Host & Microbe | 2009

Humanized mice for modeling human infectious disease: challenges, progress, and outlook.

Nicolas Legrand; Alexander Ploss; Rudi Balling; Pablo D. Becker; Chiara Borsotti; Nicolas Brezillon; Jennifer Debarry; Ype P. de Jong; Hongkui Deng; James P. Di Santo; Stephanie C. Eisenbarth; Elizabeth E. Eynon; Richard A. Flavell; Carlos A. Guzmán; Nicholas D. Huntington; Dina Kremsdorf; Michael P. Manns; Markus G. Manz; Jean-Jacques Mention; Michael Ott; Chozhavendan Rathinam; Charles M. Rice; Anthony Rongvaux; Sean Stevens; Hergen Spits; Helene Strick-Marchand; Hitoshi Takizawa; Anja U. van Lent; Chengyan Wang; Kees Weijer

Over 800 million people worldwide are infected with hepatitis viruses, human immunodeficiency virus (HIV), and malaria, resulting in more than 5 million deaths annually. Here we discuss the potential and challenges of humanized mouse models for developing effective and affordable therapies and vaccines, which are desperately needed to combat these diseases.


Journal of Immunology | 2006

Experimental Models to Study Development and Function of the Human Immune System In Vivo

Nicolas Legrand; Kees Weijer; Hergen Spits

The study of development and function of the immune system in vivo has made intensive use of animal models, but performing such work in humans is difficult for experimental, practical, and ethical reasons. Confronted with this scientific challenge, several pioneering groups have developed in the late 1980s mouse models of human immune system development. Although these experimental approaches were proven successful and useful, they were suffering from limitations due to xenograft transplantation barriers. By reviewing the characteristics of the successive models over the last 20 years, it becomes apparent that screening of potentially interesting mouse strains and usage of combinations of genetic deficiencies has led to major advances. This is particularly true for human T cell development in the murine thymus. This review will focus on these advances and the potential future improvements that remain to be accomplished.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo

Nicolas Legrand; Nicholas D. Huntington; Maho Nagasawa; Arjen Q. Bakker; Remko Schotte; Helene Strick-Marchand; Sandra J. de Geus; Stephan M. Pouw; Martino Böhne; Arie Voordouw; Kees Weijer; James P. Di Santo; Hergen Spits

The homeostatic control mechanisms regulating human leukocyte numbers are poorly understood. Here, we assessed the role of phagocytes in this process using human immune system (HIS) BALB/c Rag2−/−IL-2Rγc−/− mice in which human leukocytes are generated from transplanted hematopoietic progenitor cells. Interactions between signal regulatory protein alpha (SIRPα; expressed on phagocytes) and CD47 (expressed on hematopoietic cells) negatively regulate phagocyte activity of macrophages and other phagocytic cells. We previously showed that B cells develop and survive robustly in HIS mice, whereas T and natural killer (NK) cells survive poorly. Because human CD47 does not interact with BALB/c mouse SIRPα, we introduced functional CD47/SIRPα interactions in HIS mice by transducing mouse CD47 into human progenitor cells. Here, we show that this procedure resulted in a dramatic and selective improvement of progenitor cell engraftment and human T- and NK-cell homeostasis in HIS mouse peripheral lymphoid organs. The amount of engrafted human B cells also increased but much less than that of T and NK cells, and total plasma IgM and IgG concentrations increased 68- and 35-fold, respectively. Whereas T cells exhibit an activated/memory phenotype in the absence of functional CD47/SIRPα interactions, human T cells accumulated as CD4+ or CD8+ single-positive, naive, resting T cells in the presence of functional CD47/SIRPα interactions. Thus, in addition to signals mediated by T cell receptor (TCR)/MHC and/or IL/IL receptor interactions, sensing of cell surface CD47 expression by phagocyte SIRPα is a critical determinant of T- and NK-cell homeostasis under steady-state conditions in vivo.


American Journal of Pathology | 2009

Repopulation Efficiencies of Adult Hepatocytes, Fetal Liver Progenitor Cells, and Embryonic Stem Cell-Derived Hepatic Cells in Albumin-Promoter-Enhancer Urokinase-Type Plasminogen Activator Mice

Dhivya Haridass; Qinggong Yuan; Pablo D. Becker; Tobias Cantz; Marcus Iken; Michael Rothe; Nidhi Narain; Michael Bock; Miriam Nörder; Nicolas Legrand; Heiner Wedemeyer; Kees Weijer; Hergen Spits; Michael P. Manns; Jun Cai; Hongkui Deng; James P. Di Santo; Carlos A. Guzmán; Michael Ott

Fetal liver progenitor cell suspensions (FLPC) and hepatic precursor cells derived from embryonic stem cells (ES-HPC) represent a potential source for liver cell therapy. However, the relative capacity of these cell types to engraft and repopulate a recipient liver compared with adult hepatocytes (HC) has not been comprehensively assessed. We transplanted mouse and human HC, FLPC, and ES-HPC into a new immunodeficient mouse strain (Alb-uPA(tg(+/-))Rag2(-/-)gamma(c)(-/-) mice) and estimated the percentages of HC after 3 months. Adult mouse HC repopulated approximately half of the liver mass (46.6 +/- 8.0%, 1 x 10(6) transplanted cells), whereas mouse FLPC derived from day 13.5 and 11.5 post conception embryos generated only 12.1 +/- 3.0% and 5.1 +/- 1.1%, respectively, of the recipient liver and smaller cell clusters. Adult human HC and FLPC generated overall less liver tissue than mouse cells and repopulated 10.0 +/- 3.9% and 2.7 +/- 1.1% of the recipient livers, respectively. Mouse and human ES-HPC did not generate HC clusters in our animal model. We conclude that, in contrast to expectations, adult HC of human and mouse origin generate liver tissue more efficiently than cells derived from fetal tissue or embryonic stem cells in a highly immunodeficient Alb-uPA transgenic mouse model system. These results have important implications in the context of selecting the optimal strategy for human liver cell therapies.


Journal of Experimental Medicine | 2008

T cell–independent development and induction of somatic hypermutation in human IgM+IgD+CD27+ B cells

Ferenc A. Scheeren; Maho Nagasawa; Kees Weijer; Jörg Kirberg; Nicolas Legrand; Hergen Spits

IgM+IgD+CD27+ B cells from peripheral blood have been described as circulating marginal zone B cells. It is still unknown when and where these cells develop. These IgM+IgD+CD27+ B cells exhibit somatic hypermutations (SHMs) in their B cell receptors, but the exact nature of the signals leading to induction of these SHMs remains elusive. Here, we show that IgM+IgD+CD27+ B cells carrying SHMs are observed during human fetal development. To examine the role of T cells in human IgM+IgD+CD27+ B cell development we used an in vivo model in which Rag2−/−γC−/− mice were repopulated with human hematopoietic stem cells. Using Rag2−/−γC−/− mice on a Nude background, we demonstrated that development and induction of SHMs of human IgM+IgD+CD27+ B cells can occur in a T cell–independent manner.


Gene Therapy | 2009

Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2(-/-)gammac(-/-)) mouse model

O ter Brake; Nicolas Legrand; K von Eije; Mireille Centlivre; Hergen Spits; Kees Weijer; Bianca Blom; B Berkhout

RNA interference (RNAi) gene therapy against HIV-1 by stable expression of antiviral short hairpin RNAs (shRNAs) can potently inhibit viral replication in T cells. Recently, a mouse model with a human immune system (HIS) was developed that can be productively infected with HIV-1. In this in vivo model, in which Rag-2−/−γc−/− mice are engrafted with human CD34+CD38− hematopoietic precursor cells, we evaluated an anti-HIV RNAi gene therapy. Human hematopoietic stem cells were transduced with a lentiviral vector expressing an shRNA against the HIV-1 nef gene (shNef) or the control vector. We observed normal development of the different cell subsets of the immune system. However, although initial transduction efficiencies were similar for both vectors, a reduced percentage of transduced human immune cells was observed for the shNef vector after establishment of the HIS in vivo. Further studies are required to fully evaluate the safety implications. When we infected the mature human CD4+ T cells from the HIS mouse ex vivo with HIV-1, potent inhibition of viral replication was scored in shNef-expressing cells, confirming efficacy. When challenged with an shNef-resistant HIV-1 variant, equal replication was scored in control and shNef-expressing cells, confirming sequence-specificity of the RNAi therapy. We thus demonstrated that an antiviral RNAi-based gene therapy on blood stem cells leads to HIV-1-resistant T cells in vivo, an important proof of concept in the clinical development of RNAi against HIV-1.


Nature Medicine | 2013

High-throughput identification of antigen-specific TCRs by TCR gene capture

Carsten Linnemann; Bianca Heemskerk; Pia Kvistborg; Roelof Jc Kluin; Dmitriy A. Bolotin; Xiaojing Chen; Kaspar Bresser; Marja Nieuwland; Remko Schotte; Samira Michels; Lorenz Jahn; Pleun Hombrink; Nicolas Legrand; Chengyi Jenny Shu; Ilgar Z. Mamedov; Arno Velds; Christian U. Blank; John B. A. G. Haanen; Maria A. Turchaninova; Ron M. Kerkhoven; Hergen Spits; Sine Reker Hadrup; Mirjam H.M. Heemskerk; Thomas Blankenstein; Dmitriy M. Chudakov; Gavin M. Bendle; Ton N. M. Schumacher

The transfer of T cell receptor (TCR) genes into patient T cells is a promising approach for the treatment of both viral infections and cancer. Although efficient methods exist to identify antibodies for the treatment of these diseases, comparable strategies to identify TCRs have been lacking. We have developed a high-throughput DNA-based strategy to identify TCR sequences by the capture and sequencing of genomic DNA fragments encoding the TCR genes. We establish the value of this approach by assembling a large library of cancer germline tumor antigen–reactive TCRs. Furthermore, by exploiting the quantitative nature of TCR gene capture, we show the feasibility of identifying antigen-specific TCRs in oligoclonal T cell populations from either human material or TCR-humanized mice. Finally, we demonstrate the ability to identify tumor-reactive TCRs within intratumoral T cell subsets without knowledge of antigen specificities, which may be the first step toward the development of autologous TCR gene therapy to target patient-specific neoantigens in human cancer.


Journal of Immunology | 2009

IL-7 Enhances Thymic Human T Cell Development in "Human Immune System" Rag2–/–IL-2Rγc–/– Mice without Affecting Peripheral T Cell Homeostasis

Anja U. van Lent; Wendy Dontje; Maho Nagasawa; Rachida Siamari; Arjen Q. Bakker; Stephan M. Pouw; Kelly Maijoor; Kees Weijer; Jan J. Cornelissen; Bianca Blom; James P. Di Santo; Hergen Spits; Nicolas Legrand

IL-7 is a central cytokine in the development of hematopoietic cells, although interspecies discrepancies have been reported. By coculturing human postnatal thymus hematopoietic progenitors and OP9-huDL1 stromal cells, we found that murine IL-7 is ∼100-fold less potent than human IL-7 for supporting human T cell development in vitro. We investigated the role of human IL-7 in newborn BALB/c Rag2−/−γc−/− mice transplanted with human hematopoietic stem cells (HSC) as an in vivo model of human hematopoiesis using three approaches to improve IL-7 signaling: administration of human IL-7, ectopic expression of human IL-7 by the transplanted human HSC, or enforced expression of a murine/human chimeric IL-7 receptor binding murine IL-7. We show that premature IL-7 signaling at the HSC stage, before entrance in the thymus, impeded T cell development, whereas increased intrathymic IL-7 signaling significantly enhanced the maintenance of immature thymocytes. Increased thymopoiesis was also observed when we transplanted BCL-2- or BCL-xL-transduced human HSC. Homeostasis of peripheral mature T cells in this humanized mouse model was not improved by any of these strategies. Overall, our results provide evidence for an important role of IL-7 in human T cell development in vivo and highlight the notion that IL-7 availability is but one of many signals that condition peripheral T cell homeostasis.


PLOS ONE | 2010

Generation of human antigen-specific monoclonal IgM antibodies using vaccinated "human immune system" mice

Pablo D. Becker; Nicolas Legrand; Caroline M. M. van Geelen; Miriam Noerder; Nicholas D. Huntington; Annick Lim; Etsuko Yasuda; Sean A. Diehl; Ferenc A. Scheeren; Michael Ott; Kees Weijer; Heiner Wedemeyer; James P. Di Santo; Tim Beaumont; Carlos A. Guzmán; Hergen Spits

Background Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the ‘humanization’ of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity. The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique. Methodology/Principal Findings After transplantation with CD34+CD38− human hematopoietic progenitor cells, BALB/c Rag2−/−IL-2Rγc−/− mice acquire a human immune system and harbor B cells with a diverse IgM repertoire. “Human Immune System” mice were then immunized with two commercial vaccine antigens, tetanus toxoid and hepatitis B surface antigen. Sorted human CD19+CD27+ B cells were retrovirally transduced with the human B cell lymphoma (BCL)-6 and BCL-XL genes, and subsequently cultured in the presence of CD40-ligand and IL-21. This procedure allows generating stable B cell receptor-positive B cells that secrete immunoglobulins. We recovered stable B cell clones that produced IgM specific for tetanus toxoid and the hepatitis B surface antigen, respectively. Conclusion/Significance This work provides the proof-of-concept for the usefulness of this novel method based on the immunization of humanized mice for the rapid generation of human mAbs against a wide range of antigens.

Collaboration


Dive into the Nicolas Legrand's collaboration.

Top Co-Authors

Avatar

Hergen Spits

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Kees Weijer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Bianca Blom

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas D. Huntington

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ben Berkhout

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuno L. Alves

Instituto de Biologia Molecular e Celular

View shared research outputs
Researchain Logo
Decentralizing Knowledge